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Preface

QTL are quantitative trait loci: genetic loci that contribute to variation in
a quantitative trait. QTL mapping is the effort to identify QTL through an
experimental cross.

In this book, we give an overview of the practical aspects of the analysis
of QTL mapping experiments based on inbred line crosses, with explicit in-
structions on the use of the R/qtl software (an add-on package for the general
statistical software, R). We give some of the details of the statistical meth-
ods, but we mostly focus on how to get and make sense of results. Real data
examples are included throughout.

The intended audience includes scientists who are performing QTL map-
ping experiments and participating directly in the analysis. We expect the
reader to have a general understanding of statistical methods, including max-
imum likelihood estimation and linear regression. Some readers will be statis-
ticians analyzing data from QTL experiments with a basic understanding of
genetics. We provide limited introduction to either statistics or genetics. Read-
ers with a limited understanding of statistics may wish to first study Rice
(2006). Readers with a limited understanding of genetics may wish to first
study Brown (2006). Alternatively, one might consider The Cartoon Guide
to Statistics (Gonick and Smith, 1993) and The Cartoon Guide to Genetics
(Gonick and Wheelis, 1991), which are more gentle and entertaining (but less
complete) introductions to the subjects.

In line with our aim to describe the practical aspects of QTL mapping, the
book contains extensive discussion of the R/qtl software. We have attempted
to separate the discussion of R/qtl into subsections, so that readers who wish
to focus on the basic ideas and skip over the software considerations may do
so. In some places (e.g., Chap. 3, on data diagnostics), this was not feasible.

While much can be accomplished with R/qtl (and much of this book may
be read) with a limited understanding of R, efficient use of the software (and
an understanding of more complex R/qtl code) requires a more detailed un-
derstanding of R. We provide very little discussion of R itself, and refer the
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reader to Dalgaard (2002), for a gentle introduction to R, and Venables and
Ripley (2002), for a more comprehensive discussion of R.

The content of the book is ordered according to the way in which QTL
analyses might proceed. (There is one exception: we postpone the discus-
sion of experimental design to Chap. 6, as it requires a reasonably complete
understanding of QTL mapping.) We begin with an introduction (Chap.1),
including an overview of the structure of data from a QTL mapping experi-
ment and the basic statistical problems. In Chap. 2, we explain how to import
QTL mapping data into R/qtl, we describe some of the example data sets that
will be considered further in later chapters, and we demonstrate how one may
simulate QTL mapping data in R/qtl. At the end of the chapter, we describe
the internal structure of QTL mapping data within R/qtl; this section should
probably be skipped at first reading. In Chap. 3, we describe the various di-
agnostic procedures for assessing the quality and integrity of QTL mapping
data.

Chapter 4 is the heart of the book. There, we discuss the basic approach to
QTL mapping (interval mapping), the assessment of statistical significance in
a genome scan, and the calculation of confidence intervals for QTL location.
We focus on the case that residual variation in the phenotype follows a normal
distribution. In Chap. 5, we consider several extensions of standard interval
mapping for non-normal phenotypes.

In Chap. 6, we describe various experimental design issues, including the
choice of cross, marker density, and sample size, and selective genotyping
strategies. We consider both the power to detect a QTL and the precision of
localization of QTL. We focus on the use of the R/qtlDesign software (another
add-on package for R), but also describe how one may estimate power and
precision through computer simulation with R/qtl.

In Chap. 7, we describe the use of covariates in QTL mapping. We initially
consider the inclusion of additive covariates (in which the effect of the QTL is
constant, independent of the value of the covariate), but we also discuss the
investigation of QTL × covariate interactions. We conclude the chapter with
a discussion of composite interval mapping (CIM), in which genetic markers
are included as covariates.

The first seven chapters focus almost exclusively on single-QTL models.
In Chap. 8, we take the first step towards multiple-QTL models by consid-
ering two-dimensional, two-QTL genome scans. Such two-dimensional scans
offer the opportunity to assess evidence for linked or interacting QTL. In
Chap. 9, we provide a more comprehensive discussion of the identification
and exploration of multiple-QTL models. The problem is viewed as one of
model selection in multiple linear regression, though with a number of special
features.

We conclude the book with two case studies (Chap. 10 and 11), in order to
illustrate the entirety of the process of mapping QTL. We bring together all
of the tools discussed in the previous chapters to demonstrate their combined
use in order to solve two moderately difficult problems.
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The book has been written with a variety of possible readers in mind, in-
cluding experienced QTL mappers interested in adopting the R/qtl software,
postdoctoral researchers new to QTL mapping, and statistics graduate stu-
dents interested in exploring applications of statistics. We do not expect that
the book will be often read front-to-back in a linear fashion, and different
readers will likely wish to approach the book differently.

The experienced QTL mapper might start with Chap. 2, on importing
QTL mapping data sets, but would then likely skip about, making liberal
use of the Contents and Index to identify sections of particular interest. The
reader new to QTL mapping should start with the Introduction (Chap. 1),
but might skip Chap. 2 and 3 at first reading and jump right into Chap. 4, in
which the essentials of QTL mapping are described.

We have created a web site with on-line complements for the book (see
http://www.rqtl.org/book). Included on that site are files with all of the R
code used in the book, including the detailed code used to create the figures.
We have also created an R package, R/qtlbook, containing all of our example
data sets (except those already included in R/qtl).

We thank Victor Boyartchuk, Bill Dietrich, Mehmet Guler, Krista Nichols,
Virginie Orgogozo, Sarah Owens, Bev Paigen, Karlyne Reilly, Noel Rose, Andy
Smith, Michelle Southard-Smith, and Gary Thorgaard for providing data and
for allowing its distribution. The public distribution of data is invaluable for
statistical genetic methods development, and for learning. We further thank
Aimee Teo Broman, Ken Manly, Krista Nichols, Virginie Orgogozo, Abra-
ham Palmer, and several anonymous reviewers for suggestions to improve
the book, and Sungjin Kim for identifying a number of typographical errors.
Our ideas on QTL mapping were greatly influenced by Gary Churchill, Mark
Neff, and Terry Speed; we thank them for many years of stimulating discus-
sions. Our efforts were supported, in part, by NIH grants R01-GM074244 and
R01-GM078338.

The book was created using R version 2.8.1, R/qtl version 1.11-12, R/qtl-
Design version 0.92, and R/qtlbook version 0.16-3. Later versions of these soft-
ware may have some minor differences; important changes will be described in
the on-line complements (http://www.rqtl.org/book). The book was con-
structed with LATEX and Sweave; we don’t know how we could have done it
otherwise. We thank the developers of R, LATEX, and Sweave for making this
work possible.

Madison, Wisconsin; San Francisco, California Karl W. Broman
August, 2009 Śaunak Sen
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2

Importing and simulating data

One of the more frustrating tasks associated with the use of any data analysis
software concerns the importation of data. Data can be imported into R/qtl in
a variety of formats, but users often have trouble with this step. In this chapter,
we describe how to import QTL mapping data into R for use with R/qtl. We
further discuss the simulation of QTL mapping data. In an optional section,
we describe the internal format that R/qtl uses for QTL mapping data.

As this may be the reader’s first exposure to R, we will introduce some of
the basic aspects of R as we go along. We should again emphasize that the
novice user will benefit by spending a couple of days reading Dalgaard (2002)
and playing with R.

Before you do anything, you must install R and the R/qtl package; this is
described in Appendix A. After invoking R, you must type library(qtl) to
load the R/qtl package. (In R, R/qtl is known as the qtl package or library.)
It is best to create a .Rprofile file containing this command, so that the
package will automatically be loaded whenever you invoke R. (See Sec. A.3.)

Essentially all tasks in R are performed via functions , such as the library
function mentioned above. Appendix B contains partial list of the functions
in R/qtl. A complete list may be viewed by typing the following.

> library(help=qtl)

The > symbol is the R prompt, which you will observe when R is ready
to accept input commands. R commands may be spread over several lines,
in which case the R prompt turns into the + symbol, indicating a continua-
tion line. (Appearance of the + prompt when one believes one’s command is
complete may indicate imbalance in parentheses. Press the escape key to can-
cel the command.) R input will be shown in a slanted typewriter font ,
while output will be in a plain typewriter font. (The output for the above
command was suppressed, as it would fill a couple of pages.)

Note that the up and down arrow keys may be used to scroll back through
previously entered commands. Emacs users will be pleased to find that many
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of the Emacs key bindings may be used. (But be careful about Ctrl-p, which
may lead you to print a page.)

2.1 Importing data

Importing QTL mapping data into R is accomplished with the read.cross

function. Data may be read in a variety of formats. We strongly recommend
the comma-delimited formats discussed in the next subsection, but Map-
Maker/QTL, Map Manager QTX, and QTL Cartographer formats may also
be used. Sample data files in most of the formats are available at the R/qtl
web site (http://www.rqtl.org/sampledata). The help file for read.cross
contains the complete details on the file formats and the use of the func-
tion. The help file may be viewed by typing ?read.cross; see Sec. A.5. Note
that basic use of the read.cross function is described in Sec. 2.1.1 on the
comma-delimited formats and is not repeated in the subsections on the other
formats.

Before contemplating loading one’s data into R, it must be assembled
into one of the accepted formats. While the comma-delimited formats can
be created with Microsoft Excel or other spreadsheet programs, a different
format (or computer program) might be best for entering the data into the
computer. (And ideally data should enter the computer directly from the
measurement device, rather than be input by hand.) The reformatting of data
files to conform to the requirements of specific software is a frequent task for
geneticists, and hand manipulation of data files is time-consuming and error-
prone. Thus we recommend that geneticists learn to program in a language
like Perl, which will greatly simplify the task. While the up-front investment
to learn Perl is large, the value such knowledge will provide over one’s career
is far larger.

2.1.1 Comma-delimited files

The recommended format for QTL mapping data to be imported into R/qtl
is the comma-delimited format, "csv" (an abbreviation of “comma-separated
values”). Several variations on this format will be described below. We begin
by discussing the basic one.

In the basic "csv" format, all phenotype and genotype data, plus the
genetic map of the typed markers, are combined into a single file with fields
delimited by commas. The file may be constructed in a spreadsheet, such as
Microsoft Excel; an example is illustrated in Fig. 2.1. Be careful about the
use of commas within the fields (though the use of quotation marks should
prevent this from being a problem).

The initial columns are phenotypes (at least one phenotype must be in-
cluded, such as a numeric index for each individual). Subsequent columns are
markers. The first row contains the phenotype and marker names. The second
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Figure 2.1. Part of a data file in the "csv" format, as it might be viewed in a
spreadsheet.

row must have empty fields in each of the phenotype columns. (This is quite
rigid; even a space character will mess things up.) For the genotype columns,
the second row should contain chromosome assignments. Numbers are best;
character strings, such as “Chr 1” or “six”will make later data manipulation
more cumbersome. Use “X” or “x” to identify the X chromosome.

An optional third row can contain the centiMorgan (cM) positions of the
genetic markers. The fields in the phenotype columns should again be blank.
Marker order is taken from the cM positions, if provided; otherwise it is taken
from the column order.

Subsequent rows correspond to the individuals, with phenotypes followed
by genotypes. Missing data should be indicated by “NA” or “-” or some other
code. (It is always best to insert some code indicating missingness rather
than leave some cells empty, as empty cells can be ambiguous: was the value
missing or was an error in data entry made?) Multiple missing data codes
may be used, but consistency between the phenotype and genotype data is
required: a missing value code for the genotype data cannot be a legitimate
phenotype and vice versa. No missing values are allowed in the chromosome
identifiers or genetic map positions.

For a backcross, two genotype codes are to be used: one for homozygotes
(e.g., AA) and one for heterozygotes (AB). For an intercross, five genotype codes
may be used: the two homozygotes (AA and BB), the heterozygote (AB), and
two further genotype codes to be used for dominant markers, such as D for
“not BB” (i.e., AA or AB) and C for “not AA” (i.e., AB or BB), as used by the
MapMaker software.

Consistency in genotype codes is required: one cannot use both A and AA

to indicate a homozygous A genotype. Also note that spaces can mess things
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Table 2.1. Possible intercrosses, and the appropriate code for the pgm “phenotype.”
In the crosses, females are always listed first, so A×B means a female A crossed to
a male B.

Possible genotypes

Cross Females Males pgm code

(A × B) × (A × B) AA, AB A-, B- 0

(B × A) × (A × B) AA, AB A-, B- 0

(A × B) × (B × A) AB, BB A-, B- 1

(B × A) × (B × A) AB, BB A-, B- 1

up: “A ” is treated as different from “A”. It is best to ensure that there are no
spaces in the final data file.

X chromosome genotypes should be coded just like the autosomal geno-
type data; in particular, hemizygous males should be coded as if they were
homozygous, rather than using separate codes for hemizygous and homozy-
gous genotypes. If X chromosome genotype data are included, one of the phe-
notypes should indicate the sex of the individuals. This may be called “sex”
or “Sex,” and the sexes may be coded by 0/1 for females/males, or by the
codes f/m, F/M, or female/male.

Further care is required for the X chromosome genotype data in an in-
tercross, as the direction of the cross must be known. Four possible inter-
crosses may be performed, as shown in Table 2.1. In all cases, the males
are hemizygous A or B at any one locus, but in the crosses (A×B)×(A×B)
and (B×A)×(A×B), the females are either AA or AB, while in the crosses
(A×B)×(B×A) and (B×A)×(B×A), the females are either AB or BB. Thus,
the order of the cross producing the F1 male is critical; for example, we wish
to know whether the paternal grandmother was from strain A or B.

We thus require, for intercrosses, a “phenotype” column named pgm (for
“paternal grandmother”), with codes 0 and 1 indicating which individuals
came from which cross, as shown in Table 2.1.

If one includes a phenotype named“id,”“ID,”or“Id,” it will be assumed to
provide individual identifiers. These will be used in certain places to indicate
the individuals (such as in plot.geno; see Sec. 3.5).

The specification of a file in the "csv" format is now complete. If the file
was created in a spreadsheet program, such as Microsoft Excel, you will need
to use “Save as” and select the format “CSV (comma-delimited)” to create
the actual file. The result will look something like that shown in Fig. 2.2. A
complete example is provided at the R/qtl web site.

With our first file format understood, we now turn to the use of read.cross
to load the data into R.

A list of the input arguments for read.cross may be viewed via the args

function, as follows. (We often use args to get a quick reminder of the in-
put to a function.) Remember that, if R/qtl is not yet loaded, one must use
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pheno,sex,pgm,c1m1,c1m3,c1m4,c1m5,c2m1,c2m2,c2m3,c2m4,...

,,,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5...

,,,8.3,49,59.5,89,1,15,45,68.9,80.9,87.4,99,0,11.2,39....

0.093,f,0,A,B,A,A,B,H,H,H,H,H,H,B,H,H,B,B,H,A,A,A,A,H,...

0.177,f,0,B,H,H,H,H,B,B,B,B,H,B,H,H,H,-,H,H,H,H,A,H,A,...

0.271,f,0,B,A,H,H,H,H,H,A,A,A,A,H,H,H,H,H,H,B,-,B,B,H,...

0.230,f,0,B,B,A,H,B,B,B,B,B,H,B,A,H,H,B,B,H,H,H,B,B,H,...

0.228,f,0,H,H,H,H,H,H,H,H,B,B,B,B,B,H,H,H,H,B,H,H,H,B,...

0.279,f,0,H,B,A,A,H,B,B,H,A,A,-,A,A,A,H,H,H,A,A,H,B,H,...

0.419,f,0,B,H,H,H,A,A,A,A,A,A,A,B,B,B,B,B,B,B,H,H,H,H,...

0.427,f,0,B,A,H,H,H,B,B,B,B,B,B,H,H,H,B,B,B,H,H,A,A,A,...

0.282,f,0,B,B,A,H,A,H,H,A,A,A,A,B,B,H,A,-,B,H,H,H,H,B,...

0.4,f,0,H,H,H,H,A,B,B,H,H,H,H,H,H,H,B,H,H,H,H,H,H,H,H,...

0.521,f,0,H,A,B,B,B,H,H,H,H,H,H,H,H,A,A,A,H,B,B,B,H,H,...

0.385,f,0,A,A,B,B,A,A,A,H,H,H,H,B,B,H,H,H,H,H,H,A,A,A,...

0.518,f,0,H,B,A,A,H,H,H,B,B,B,B,A,A,H,H,A,H,H,H,H,H,H,...
...

Figure 2.2. Part of a text file in the "csv" format. The terminal dots in each line
are just to indicate that the file extends quite far to the right.

the library function to make it available. (Ignore the NULL; that’s just a
meaningless bit from the args function.)

> library(qtl)

> args(read.cross)

function (format = c("csv", "csvr", "csvs", "csvsr", "mm",

"qtx", "qtlcart", "gary", "karl"), dir = "", file, genfile,

mapfile, phefile, chridfile, mnamesfile, pnamesfile,

na.strings = c("-", "NA"), genotypes = c("A", "H", "B", "D",

"C"), alleles = c("A", "B"), estimate.map = TRUE,

convertXdata = TRUE, ...)

NULL

This is, admittedly, rather forbidding, but not all of the arguments will
be needed in all cases. Note that the c function is used to combine multiple
items together into a vector.

The argument format will be used to indicate that we are reading data in
the "csv" format. The possible formats are shown; the first listed is taken as
the default. The argument dir is used to indicate the directory in which the
file appears. By default, it is assumed that the file is in the current working
directory. (For details on how to select or change the working directory, see
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Sec. A.4.) The argument file will be used to give the name of the data file.
The other file arguments are used for formats in which the data are split across
multiple files.

The argument na.strings is used to indicate the set of missing data codes.
By default, either “-”or “NA”will be treated as missing. Note that most things
are case-sensitive, so “na”will be treated as different from“NA”and “Na”. If all
of these appear in the data file, all should be indicated via the na.strings

argument.
The argument genotypes is used to indicate the genotype codes, and takes

a vector of character strings. The order of the codes in the string is important.
We often forget whether“D”stands for“not AA”or“not BB,”and so we generally
must refer to the help file for read.cross, where this is explained. Note, again,
that the codes are case-sensitive, so “a” will be treated as different from “A.”

The argument alleles is used to indicate custom names for the alleles
(single-character names are best), so that if one does a mouse cross of BALB/c
× DBA/2, one might want to use the codes C and D for the alleles. These will be
used in certain plots (such as of phenotype against genotype) and summaries.

If the genetic map positions of the markers are not provided in the file
and estimate.map=TRUE, the intermarker distances will be estimated, while
if estimate.map=FALSE, a dummy map will be created. (If genetic map posi-
tions are provided, this argument will be ignored.) Estimation of the genetic
map can sometimes be time-consuming, and so one may wish to use esti-

mate.map=FALSE. One may later estimate the map with the function est.map

and plug it into the data object with replace.map; see Sec. 3.4.3.
If marker positions are provided in the file, it is important that no two

markers are placed at precisely the same position. If they are, this may be
rectified with the function jittermap; see page 84.

The “...” at the end of the specification of read.cross is used to allow
additional arguments to be specified; these are passed to the more basic R
function read.table, which does the actual work of reading in the data. Its
use will be explained further below.

There seems a lot to understand, but use of read.cross is generally not
so tedious as it might appear, as most of the arguments to the function can
be ignored. For example, suppose the data in Figures 2.1 and 2.2 are saved
in one’s working directory as the file mydata.csv. One could read this into R
with the following.

> mydata <- read.cross("csv", "", "mydata.csv")

Note that “<-” is the assignment operator. The data are read from the
mydata.csv file and combined into a single object (with a very special internal
format, described in Sec. 2.6.1) and assigned to mydata. This will be a new
object in our R workspace that we may manipulate and analyze. Type ls()

or objects() to list the objects in your workspace.
Also note that arguments to functions in R may be specified by their posi-

tion in the list, by their name, or they may be left unspecified (in which case
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the default values are assumed). Thus, in the code above, it is assumed that
format="csv", dir="", and file="mydata.csv", and we need not specify
values for na.strings, genotypes, or alleles, as the default values suffice
for our data. All of the following lines of code are equivalent.

> mydata <- read.cross("csv", , "mydata.csv")

> mydata <- read.cross("csv", file="mydata.csv")

> mydata <- read.cross(format="csv", file="mydata.csv")

> mydata <- read.cross(file="mydata.csv", format="csv")

> mydata <- read.cross(file="mydata.csv")

If the data file were in some location other than the R working directory,
we would need to specify its location with the dir argument. The directory
(or folder) hierarchy is indicated with forward slashes (/). In Windows, it
is traditional to use backslashes (\), but these will not work in R, though
double-backslashes (\\) may be used in place of forward slashes.

For example, if we were working on a Macintosh and our file was on the
Desktop, we might use the following code. The tilde (~) denotes our home
directory.

> mydata <- read.cross("csv", "~/Desktop", "mydata.csv")

If we were working in Windows and the file was located in c:\My Data,
we could use the following code.

> mydata <- read.cross("csv", "c:/My Data", "mydata.csv")

If we had coded the genotype data differently, we would need to use the
genotypes argument. Because of all of the intervening file name arguments,
the na.strings, genotypes, and alleles arguments generally must be spec-
ified by name. For example, suppose missing data were coded “na” and that
the genotypes were coded BB/BC/CC. Then the data would be read as follows.

> mydata <- read.cross("csv", "", "mydata.csv", na.strings="na",

+ genotypes=c("BB","BC","CC"),

+ alleles=c("B","C"))

We recommend downloading the example "csv" data file (listeria.csv)
from the R/qtl web site and trying to load it into R. (The file is included with
the R/qtl package, but it is in a spot that may be difficult to find.) If one has
trouble importing one’s own data, it is a good idea to try importing a file that
is known to be correct, so one may determine whether the problem concerns
some incompatibility in the file or an incomplete understanding of the use of
read.cross.

Outside the United States, commas are sometimes used instead of periods
in numbers, and so semicolons are sometimes used instead of commas in such
CSV files. Files of this sort may also be read; one must make use of the flexibil-
ity in the read.cross function through the “...” in its specification, through
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# The ch3c data

# File created by Karl W Broman, 7-19-06

# Intercross between C57BL/6J and A/J

# 100 females from the cross (AxB)x(AxB)

# 101 markers, including 10 on the X chromosome

pheno,sex,pgm,c1m1,c1m3,c1m4,c1m5,c2m1,c2m2,c2m3,c2m4,...

,,,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5...

,,,8.3,49,59.5,89,1,15,45,68.9,80.9,87.4,99,0,11.2,39....

0.093,f,0,A,B,A,A,B,H,H,H,H,H,H,B,H,H,B,B,H,A,A,A,A,H,...

0.177,f,0,B,H,H,H,H,B,B,B,B,H,B,H,H,H,-,H,H,H,H,A,H,A,...

0.271,f,0,B,A,H,H,H,H,H,A,A,A,A,H,H,H,H,H,H,B,-,B,B,H,...

0.230,f,0,B,B,A,H,B,B,B,B,B,H,B,A,H,H,B,B,H,H,H,B,B,H,...

0.228,f,0,H,H,H,H,H,H,H,H,B,B,B,B,B,H,H,H,H,B,H,H,H,B,...

0.279,f,0,H,B,A,A,H,B,B,H,A,A,-,A,A,A,H,H,H,A,A,H,B,H,...

0.419,f,0,B,H,H,H,A,A,A,A,A,A,A,B,B,B,B,B,B,B,H,H,H,H,...

0.427,f,0,B,A,H,H,H,B,B,B,B,B,B,H,H,H,B,B,B,H,H,A,A,A,...
...

Figure 2.3. An example file in the "csv" format with comment lines included.

which further arguments are passed down to the more basic read.table func-
tion. That function allows arguments sep, for specifying the field separator,
and dec, for specifying the character used for the decimal point.

Thus, if the mydata.csv file had used semicolons and commas rather than
commas and periods, we would read it into R with the following code.

> mydata <- read.cross("csv", , "mydata.csv", sep=";", dec=",")

Note that these additional arguments must be specified by name.
One may include comments in an input file, to be ignored when it is im-

ported, but useful to document its contents. A single symbol, such as #, may
be used to indicate that the remainder of the line is to be ignored. The chosen
symbol cannot appear anywhere in the data, and is indicated, in the call to
read.cross, via the comment.char argument. (In R versions 2.3.1 and ear-
lier, comment.char="#"was the default, but in R versions 2.4.0 and later, the
default has become comment.char="", and so no such commenting character
is assumed.)

For example, the file in Fig. 2.3 contains initial comment lines, indicated
by #. To read this file into R, we would use the following code.

> mydata <- read.cross("csv", , "mydata.csv", comment.char="#")

There are three related comma-delimited formats: "csvr", "csvs", and
"csvsr". These are primarily for the case of expression genetic data, in which
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A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

pheno

sex
pgm

0.093 0.177 − 0.230 0.228 0.279 0.419

f f f f f f f

0 0 0 0 0 0 0

c1m1

c1m3

c1m4

c1m5

c2m1

c2m2

c2m3

c2m4

c2m5

c2m6

c2m7

c3m1

c3m2

1

1

1

1

2

2

2

2

2

2

2

3

3

8.3

49.0

59.5

89.0

1.0

15.0

45.0

68.9

80.9

87.4

99.0

0.0

11.2

B

B
−

H

B

B

B

B

B

H

B

A

H

H

H

H

H

H

H

H

H

B

B

B

B

B

H

B

A

A

H
−

B

H

A

A

A
−

B

H

H
−

A

A

A

A

A

A
−

B

B

B
−

H

H

H

B

B

B

B

B

B

H

H

B

B

A

H

A

H

H

A

A

A

A

B

B

H

H

H

H

A

B

B

H

H

H

H

H

H

Figure 2.4. Part of a data file in the "csvr" format, as it might be viewed in a
spreadsheet.

QTL mapping is to be performed with the expression of all genes on a micro-
array, so that one has thousands or tens of thousands of phenotypes.

The "csvr" format is just like the "csv" format, but with rows and
columns interchanged. (The “r” is for rotate, but the file is technically trans-
posed rather than rotated.) In Fig. 2.4, the file from Fig. 2.1 is shown in
the "csvr" format. All other aspects are the same as before, and the use of
read.cross is unchanged, so such a file (call it "mydata_rot.csv") could be
read in as follows.

> mydata <- read.cross("csvr", , "mydata_rot.csv")

Of course, other arguments, such as genotypes, may be used as before.
The "csvs" format is similar to the "csv" format, but with separate files

for the phenotypes and the genotypes. The genotype data file must begin
with a single column containing individual identifiers, followed by columns for
each of the markers. As with the phenotype columns for the "csv" format,
this initial column must have empty cells in the rows for the chromosome
assignments and marker positions. The phenotype data file must contain a
column with precisely the same name and contents, so that we can be sure
that the phenotype and genotype data are appropriately aligned. An example
of this format is display in Fig. 2.5.

To read data in the "csvs" format, one must specify the names of both
files. This may be done via the read.cross arguments genfile and phefile,
as follows. (We assume that both files are in the current working directory.)

> mydata <- read.cross("csvs", genfile="mydata_gen.csv",

+ phefile="mydata_phe.csv")
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Figure 2.5. Part of the genotype and phenotype data files for an example of the
"csvs" format, as they might be viewed in a spreadsheet.

For the user’s convenience, if the phefile argument was not specified, but
the file and genfile arguments were, we assume that file and genfile

are indicating the genotype and phenotype data files, respectively. This can
simplify the code a bit. For example, suppose that we are working in a di-
rectory MyProject/R, and that the two data files are sitting in the directory
MyProject/Data. The data could be imported as follows.

> mydata <- read.cross("csvs", "../Data", "mydata_gen.csv",

+ "mydata_phe.csv")

The "csvsr" format is just like the "csvs" format, but with both files
rotated as in the "csvr" format. We use read.cross in the same way as for
the "csvs" format.

2.1.2 MapMaker/QTL

The format "mm" is for data in the format used by the MapMaker software.
There are two files, a .raw file containing the genotype and phenotype data
and a second file containing the genetic map information. Examples of these
files are provided on the R/qtl web site.

The genetic map file may be in one of two formats. First, one may use
a .maps file, produced by MapMaker/Exp. Second, one may create a space-
delimited file, as illustrated in Fig. 2.6, with one row for each marker. The
first column is the chromosome assignment, the second column is the marker
name (which must match that used in the .raw file exactly), and an optional
third column may contain the cM position of each marker.

Use of read.cross to read data in the "mm" format is similar to the case of
the "csvs" format, discussed in the previous subsection. Specify the .raw file
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1 D10M44 0.00

1 D1M3 1.00

1 D1M75 24.85

1 D1M215 40.41

1 D1M309 49.99

1 D1M218 52.80

1 D1M451 70.11

1 D1M504 70.81

1 D1M113 80.62

1 D1M355 81.40

1 D1M291 84.93

1 D1M209 92.68

1 D1M155 93.64

2 D2M365 0.00

2 D2M37 27.94

2 D2M396 47.11
...

Figure 2.6. The initial portion of a space-delimited file that may be used to indicate
marker locations for the MapMaker ("mm") format.

with the file argument and the genetic map file with the mapfile argument.
(The format of the genetic map file is determined automatically.) Note that
the na.strings and genotypes arguments are ignored with this format, as
such codes are specified within the .raw file.

For the user’s convenience, if the mapfile argument was not specified, but
the genfile argument was, we assume that genfile indicates the genetic
map file. This can simplify the code a bit. For example, suppose that we are
working in a directory MyProject/R, and that the two data files are sitting in
the directory MyProject/Data. The data could be imported as follows.

> mydata <- read.cross("mm", "../Data", "mydata.raw",

+ "mydata.maps")

2.1.3 QTL Cartographer

The format "qtlcart" is for data in the format used by the QTL Cartog-
rapher software. There are two files, a .cro file containing the genotype and
phenotype data and a .map file containing the genetic map. Examples of these
files are provided on the R/qtl web site.

We use read.cross to read the QTL Cartographer files in a manner similar
to that used for the MapMaker files. For example, suppose we are working in
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a directory MyProject/R and that the two data files are in the directory
MyProject/Data; they could then be imported as follows.

> mydata <- read.cross("qtlcart", "../Data", "mydata.cro",

+ "mydata.map")

2.1.4 Map Manager QTX

The format "qtx" is for data in the format used by the Map Manager QTX
software. There is a single file, generally with extension .qtx, containing all of
the genotype and phenotype data as well as the genetic markers’ chromosome
assignments and order. Genetic map positions for the markers are generally
not included in the file, and so must be estimated. An example file is provided
on the R/qtl web site.

Loading data from a .qtx file into R/qtl is simple. The na.strings and
genotypes arguments need not be used, as such codes are included within the
file. Suppose that we are working in the directory MyProject/R; to read the
mydata.qtx from the directory MyProject/Data, type the following.

> mydata <- read.cross("qtx", "../Data", "mydata.qtx")

As the genetic map positions for the markers are generally not provided
in the .qtx file, and so must be estimated from the data, the import of the
data can be time consuming. One may wish to use estimate.map=FALSE in
the call to read.cross, and then use est.map and replace.map to estimate
the map and then plug it into the data. This process is described in more
detail in Sec. 3.4.3, but let us briefly consider a simple example.

> mydata <- read.cross("qtx", "", "mydata.qtx",

+ estimate.map=FALSE)

> themap <- est.map(mydata, error.prob=0.001)

> mydata <- replace.map(mydata, themap)

In the first line of code, we read in the data without estimating the intermarker
distances, and so a dummy map is inserted into the mydata object. In the
second line, we call est.map to estimate the genetic map, here assuming that
genotypes may be in error with probability 0.1%. The result is placed in the
object themap. In the final line of code, the replace.map function is used to
replace the map within mydata, inserting themap in its place. The output is
the same data but with a different map; we assign it back to mydata, writing
over the original data. (We might have assigned it to an object with a different
name, in which case both would appear in our R workspace.)

2.2 Exporting data

Data may be exported from R/qtl into several formats. This may be useful,
for example, if one wishes to compare results from R/qtl to those from QTL
Cartographer, or simulate data in R/qtl and analyze them in Cartographer.
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The write.cross function is used for this purpose. The cross argument is
the cross object to be exported. The chr argument may be used to indicate a
subset of chromosomes that should exported. The format argument indicates
the format to which the data should be written.

The filestem argument indicates the initial part of the file names. For
example, with the qtlcart format, .cro and .map files will be created. If one
uses filestem="mydata", the files "mydata.cro" and "mydata.map" will be
created.

The filestem can include a directory, so that the files may be written
somewhere other than the current working directory. For example, if one
wishes to save chromosomes 5 and 13 of the listeria data to a file in the
"csv" format on the Desktop on a Macintosh computer, use the following
code.

> data(listeria)

> write.cross(listeria, "csv", "~/Desktop/listeria", c(5, 13))

2.3 Example data

A variety of example data sets are included with R/qtl. A complete list may
be obtained with the following.

> data(package="qtl")

Of particular interest are the hyper and listeria data, which will be used
as the main examples in this book.

The hyper data set is from Sugiyama et al. (2001). (It was also discussed
in Sec. 1.2.) This is a backcross using the C57BL/6J and A/J inbred mouse
strains, with the F1 mated back to the C57BL/6J strain. There are 250 male
backcross individuals. Mice were given water containing 1% NaCl for two
weeks; the phenotype is blood pressure (actually the average of 20 blood
pressure measurements from each of 5 days).

The listeria data set is from Boyartchuk et al. (2001). This is an inter-
cross using the C57BL/6ByJ and BALB/cByJ inbred mouse strains. There
are 120 female intercross individuals (though only 116 were phenotyped). Mice
were injected with Listeria monocytogenes ; the phenotype is survival time (in
hours). A large proportion of the mice (35/116) survived past the 240-hour
time point and were considered to have recovered from the infection; their
phenotype was recorded as 264.

A number of further example data sets will be used in this book. (For a
summary of all data sets considered in the book, see Appendix C.) These have
been compiled into an R package, R/qtlbook (known in R as the qtlbook

package). It may be obtained from the website for the book (http://www.
rqtl.org/book) and from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org).
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Additional example data may be obtained at the QTL Archive at The
Jackson Laboratory (http://cgd.jax.org/nav/qtlarchive1.htm). Most of
the data sets are available in the "csv" format. One must register to access
the data. As stated at the QTL Archive, “The authors of the datasets retain
individual ownership of the data. We request, as a courtesy to the authors,
that you alert them in advance of any publications that result from reanalysis
of these data or obtain permission prior to redistribution of data or results.”

2.4 Data summaries

All of the data read by read.cross (including genotypes, phenotypes, and
the genetic map) will be stored in a single object. (This object is stored in
a quite complex form; see Sec. 2.6.1.) A number of functions are provided to
get summary information about the object.

The most important function is summary.cross. In addition to providing
a brief summary of the cross, it performs an extensive series of checks of
the integrity of the data (for example, that there are the same number of
individuals in the phenotype data as in the genotype data).

The data object for a QTL mapping experiment is assigned a “class”
"cross". R includes some simple object-oriented features, so that one may
use the generic functions summary and plot on an object, and the relevant
summary or plot is made.

For example, the following code loads the listeria data and displays a
brief summary.

> data(listeria)

> summary(listeria)

F2 intercross

No. individuals: 120

No. phenotypes: 2

Percent phenotyped: 96.7 100

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19

X chr: X

Total markers: 133

No. markers: 13 6 6 4 13 13 6 6 7 5 6 6 12 4 8 4 4 4

4 2

Percent genotyped: 88.5
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Figure 2.7. The summary plot of the listeria data provided by the plot.cross

function, including the pattern of missing genotype data (upper left; black pixels
indicate missing data), the genetic map of the typed markers (upper right), a his-
togram of the phenotype (lower left), and a bar plot of the sexes (lower right).

Genotypes (%): CC:26.2 CB:48.9 BB:24 not BB:0

not CC:0.9

We see that this is an intercross with 120 individuals, that there are two
phenotypes, and 20 chromosomes containing 133 markers, and with genotype
completion of 88.5%.

In the above code, the generic summary function sees that listeria has
class "cross" and passes it to the summary.cross function, which provides
the actual summary.

Similarly, the following code provides a summary plot of the listeria

data, and in this case the generic plot function passes listeria to the
plot.cross function, which makes the plot (shown in Fig. 2.7).

> plot(listeria)

The individual panels in Fig. 2.7 may be obtained with the following code.
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> plot.missing(listeria)

> plot.map(listeria)

> plot.pheno(listeria, 1)

> plot.pheno(listeria, 2)

The plot.missing function creates the plot with the pattern of missing geno-
type data. It takes an argument reorder which can be used to order the
individuals according to their phenotype. The genetic map is obtained with
plot.map. The function plot.pheno plots a phenotype, either as a histogram
(using the R function hist) or as a bar plot (using the R function barplot),
depending on the nature of the phenotype.

Finally, there are a variety of other functions for getting additional small
pieces of information about a cross object. They are largely self-explanatory.

> nind(listeria)

[1] 120

> nphe(listeria)

[1] 2

> totmar(listeria)

[1] 133

> nchr(listeria)

[1] 20

> nmar(listeria)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

13 6 6 4 13 13 6 6 7 5 6 6 12 4 8 4 4 4 4 2

The function nmar gives the numbers of markers on individual chromosomes.

2.5 Simulating data

One can simulate QTL mapping data in R/qtl with the sim.cross function;
it can simulate only additive QTL models. These basic facilities are described
in the next subsection. More complex QTL models may also be simulated by
making use of the QTL genotype data, which are stored in the object output
by sim.cross. This will be described in the following subsection. Computer
simulations are particularly useful for exploring the power to detect QTL and
the precision of localization of QTL. For further details, see Sec. 6.6.
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Figure 2.8. A genetic map, with approximately 10 cM marker spacing, modeled
after the mouse genome and contained in the map10 data set in R/qtl.

2.5.1 Additive models

The sim.cross function may be used to simulate a backcross or intercross
with an additive QTL model. It requires, as input, a genetic map of markers.
Such a map must be stored in a specific and rather complicated form (see
Sec. 2.6.2), and so we first describe how to create such a map.

First, an example map, modeled after the mouse genome and having ap-
proximately evenly spaced markers (at ∼10 cM) is provided with R/qtl in the
data set map10. To access the object and plot the map, type the following.

> data(map10)

> plot(map10)

The plot is shown in Fig. 2.8. The marker spacing varies slightly across chro-
mosomes so that the lengths of the chromosomes match those of the mouse
genome.

Second, one may extract the genetic map from a QTL mapping data set
with the pull.map function. For example, the following code extracts the map
from the listeria data.

> data(listeria)

> listmap <- pull.map(listeria)

Finally, one may use sim.map to generate a map, with equally spaced
markers or with markers placed randomly. Important arguments to sim.map

include len (the cM lengths of the chromosomes), n.markers (the numbers
of markers on the chromosomes), anchor.tel (indicates whether the ends of
the chromosomes should be forced to have markers), include.x (whether the
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final chromosome should be designated to be the X chromosome, versus all
chromosomes being autosomes), and eq.spacing (whether markers should be
spaced evenly).

For example, to create a map with a single autosome of length 200 cM and
having markers equally spaced at 20 cM, type the following.

> mapA <- sim.map(200, 11, include.x=FALSE, eq.spacing=TRUE)

To create a map with 19 autosomes and an X chromosome, chromosomes
all of length 100 cM, and each containing 10 randomly positioned markers,
though ensuring one marker at each end of each chromosome, we would type
the following.

> mapB <- sim.map(rep(100, 20), 10)

A similar map, but without anchoring the telomeres, would be obtained
as follows.

> mapC <- sim.map(rep(100, 20), 10, anchor.tel=FALSE)

Finally, to get a map with four autosomes of lengths 50, 75, 100, and
125 cM, respectively, and with equally spaced markers at a 5 cM spacing,
type the following.

> L <- c(50, 75, 100, 125)

> mapD <- sim.map(L, L/5+1, eq.spacing=TRUE, include.x=FALSE)

Note that one can use the summary.map function to get a short summary
of a genetic map; it works much like the summary.cross function described in
Sec. 2.4. We can get a summary of the mapD object, created above, as follows.

> summary(mapD)

n.mar length ave.spacing max.spacing

1 11 50 5 5

2 16 75 5 5

3 21 100 5 5

4 26 125 5 5

overall 74 350 5 5

With a genetic map in hand, we can now turn to the simulation of the ac-
tual data. The following code simulates data for a backcross of 100 individuals,
with complete and error-free genotype data, and markers placed according to
the genetic map in map10.

> simA <- sim.cross(map10, n.ind=100, type="bc")

We would simulate an intercross in the same way, using type="f2".
If QTL are to be simulated, we must specify the model via the model argu-

ment, which should be a matrix with three columns for a backcross and four
columns for an intercross. The first column in the matrix gives the chromo-
somes on which the QTL sit and the second column gives their cM positions.
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The third column contains the additive effect of each QTL: in a backcross,
the difference between the phenotype averages in heterozygotes and homozy-
gotes; in an intercross, half the difference between phenotype averages for the
homozygotes. In an intercross, there must be a fourth column giving the dom-
inance effect for each QTL (the difference between the average phenotype for
the heterozygotes and the midpoint between the average phenotypes for the
homozygotes).

Phenotypes are simulated from a normal distribution with residual vari-
ance σ2 = 1. Thus, in a backcross, if there is one QTL with additive effect
a, the proportion of the phenotypic variance explained by the QTL (i.e., the
heritability due to the QTL) will be a2/4/(a2/4 + 1). In an intercross with
one QTL exhibiting no dominance, the proportion of the phenotypic variance
explained is a2/2/(a2/2 + 1).

Let us first simulate a backcross with two additive QTL, each responsible
for 8% of the phenotypic variance. Place the first at 50 cM on chromosome 1
and the second at 65 cM on chromosome 14. We must first find the additive
effects that correspond to 8% phenotypic variance. Since the QTL are unlinked
and have the same size effect, we need (a2/4)/[2(a2/4) + 1] = 0.08. Solving
for a, we obtain a =

√
4 × 0.08/(1 − 2 × 0.08).

> a <- 2 * sqrt(0.08 / (1 - 2 * 0.08))

> mymodel <- rbind(c(1, 50, a), c(14, 65, a))

> simB <- sim.cross(map10, type="bc", n.ind=200, model=mymodel)

We use the c function to combine the chromosome, position and effect of each
QTL into a vector, and then rbind to combine the two into a matrix (rbind
makes them rows in the matrix).

As a further example, we simulate an intercross of 250 individuals with
three QTL, two having no dominance but with effects in the opposite direc-
tions and a third being strictly dominant. Let’s have the first two QTL be
linked on chromosome 3 at positions 40 cM and 65 cM, and place the third
on chromosome 4 at 5 cM. For simplicity, let’s set the effects at 0.5.

> mymodel2 <- rbind(c(3, 40, 0.5, 0), c(3, 65, -0.5, 0),

+ c(4, 5, 0.5, 0.5))

> simC <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2)

By default, there are no errors in the genotype data. Errors can be included
at random via the error.prob argument. Genotype data are also, by default,
complete. The genotype data can be missing at random with some proba-
bility via the missing.prob argument. And so we can repeat our backcross
simulation with 1% genotyping errors and 5% missing data as follows.

> simD <- sim.cross(map10, type="bc", n.ind=200, model=mymodel,

+ error.prob=0.01, missing.prob=0.05)

Random missing genotype data is rather artificial. For more realistic miss-
ing data, we can simulate an intercross of the same size as the listeria data
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and apply the missing data observed in that data set. This is not so simple,
due to the complexity of the cross data objects and the need for a loop over
chromosomes, and so the following code has little chance of being understood
by the novice.

> data(listeria)

> listmap <- pull.map(listeria)

> simE <- sim.cross(listmap, type="f2", n.ind=nind(listeria),

+ model=mymodel2)

> for(i in 1:nchr(simE))

+ simE$geno[[i]]$data[ is.na(listeria$geno[[i]]$data) ] <- NA

By default, simulations are performed assuming no crossover interference
at meiosis. One may also simulate the crosses under the χ2 model or the Stahl
model. (See Sec. 2.7 for references.) The χ2 model has a single parameter, m,
which is a non-negative integer; m = 0 corresponds to no interference. With
m > 0, it is assumed that, on the four-strand bundle at meiosis, chiasmata
and intermediate points are thrown down at random (according to a Poisson
process), and that every (m + 1)st point is a chiasma. No chromatid interfer-
ence is assumed, so that the particular strands involved in each chiasma are
at random, independent between chiasmata. As a result, the crossovers on a
random meiotic product may be obtained by “thinning” the chiasmata inde-
pendently with probability 1/2. (That is, each chiasma has 1/2 chance of being
a crossover on the random product, with independence between chiasmata.) In
the Stahl model, chiasmata arise according to two independent mechanisms,
one following a χ2 model and the other exhibiting no interference; the ob-
served chiasma locations are the superposition of the two processes. There is
one additional parameter, p, giving the proportion of chiasmata to come from
the mechanism exhibiting no interference.

We can simulate under the χ2 model and the Stahl model via the argu-
ments m and p to sim.cross. By default, m=0 (in which case p is irrelevant),
indicating no crossover interference. The mouse exhibits strong crossover in-
terference with m ≈ 10. We can repeat our previous simulation, but with
recombination according to a χ2(m = 10) model as follows.

> simF <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2,

+ m=10)

We can simulate from the Stahl model, with m = 10 and p = 0.1, as
follows.

> simG <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2,

+ m=10, p=0.1)

2.5.2 More complex models

The simulations in the previous section were restricted to strictly additive
QTL models and with residual variation following a normal distribution with



2.5 Simulating data 41

variance σ2 = 1. However, the QTL genotype data are stored as a matrix
within the output of sim.cross; with these data one may simulate data from
essentially any QTL model.

First, let us simulate two QTL exhibiting epistasis. Consider a backcross of
200 individuals, with a QTL located at 25 cM on chromosome 4 and another
at 45 cM on chromosome 5. Assume that an effect is seen only if an individual
is homozygous at both QTL, in which case the phenotype is reduced by one
unit.

We begin by simulating QTL having no effect, just so that their geno-
types may be obtained, but so that the simulated phenotype will follow a
normal(0,1) distribution, independent of genotype. We then modify the phe-
notype for individuals who are homozygous at both QTL. This requires a bit
of mucking about in the cross data object.

> data(map10)

> nullmodel <- rbind(c(4, 25, 0), c(5, 45, 0))

> episim <- sim.cross(map10, type="bc", n.ind=200,

+ model=nullmodel)

> qtlg <- episim$qtlgeno

> wh <- qtlg[,1]==1 & qtlg[,2]==1

> episim$pheno[wh, 1] <- episim$pheno[wh, 1] - 1

In the fifth line, we pull out the QTL genotype data. (The columns are the
QTL; the rows are the individuals.) In the sixth line, we identify the indi-
viduals that are homozygous at both QTL. (Internally, in a backcross, 1 and
2 correspond to the homozygous and heterozygous genotypes, respectively.
In an intercross, 1 and 3 are the two homozygous genotypes and 2 is the
heterozygous genotype.)

We might create a binary version of this phenotype by thresholding at 1.
(Individuals with quantitative phenotype > 1 become affected; the others are
unaffected.) We can paste this into the simulated data as a second phenotype.

> binphe <- as.numeric(episim$pheno[,1] > 1)

> episim$pheno$affected <- binphe

There will now be a second phenotype named “affected”with 1 and 0 indi-
cating affected and unaffected, respectively.

Finally, we might assign sexes to the individuals at random, and include a
sex difference in the phenotype and even a difference in the effect of the QTL
in the two sexes (a QTL × sex interaction). We’ll create a third phenotype
with these features, and place “sex” in the data as a fourth phenotype. Here,
0 and 1 correspond to females and males, respectively.

> sex <- sample(0:1, nind(episim), replace=TRUE)

> phe3 <- rnorm(nind(episim), 0, 1)

> phe3[wh & sex==0] <- phe3[wh & sex==0] - 1.5

> phe3[wh & sex==1] <- phe3[wh & sex==1] - 0.5
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> episim$pheno$pheno3 <- phe3

> episim$pheno$sex <- sex

We use the R function sample to sample with replacement from the vector
(0, 1), and rnorm to simulate standard normal data. The epistasis pattern for
the two QTL is as before, but the effects are different in the two sexes. We
reuse the wh object, created above, that indicated the individuals who were
homozygous at both QTL.

2.6 Internal data structure

In this section, we describe the internal data structures used by R/qtl for cross
and genetic map objects and the R syntax required to get access to the data.
Other data structures (such as those produced by the scanone and scantwo

functions) will be described in later chapters. This section is quite technical
and will require a reasonably detailed understanding of R, and so it should
probably be skipped initially. The choice of data structures required some
balance between ease of programming and simplicity for the user interface.
The syntax for references to certain pieces of the internal data can be quite
complicated.

2.6.1 Experimental cross

We describe the internal data structure used by R/qtl for QTL mapping data;
we will look at the data set hyper as an example. First, the object has a
“class,”which indicates that it corresponds to data for an experimental cross,
and gives the cross type. By having class "cross", the functions plot and
summary know to send the data to plot.cross and summary.cross.

> data(hyper)

> class(hyper)

[1] "bc" "cross"

As you can see, the class is a two-element vector containing first a character
string indicating the cross type ("bc" or "f2") and second "cross" to indicate
that it is an experimental cross.

Every cross object is a list with two components, one containing the geno-
type data and genetic maps and the other containing the phenotype data.

> names(hyper)

[1] "geno" "pheno"

The phenotype data is simply a matrix (more strictly a data frame) with
rows corresponding to individuals and columns corresponding to phenotypes.
We look at the phenotypes for the first five individuals as follows.
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> hyper$pheno[1:5,]

bp sex

1 109.6 male

2 109.8 male

3 110.1 male

4 110.6 male

5 115.0 male

The first phenotype is the blood pressure of each mouse; the second phenotype
indicates their sex. (In this case, all mice are male.) The phenotypes can be
either numeric or factors. The sex phenotype can be coded 0/1, f/m, F/M, or
female/male for female/male; in all but the first case, it must be a factor.

The genotype data is a list with components corresponding to chromo-
somes. Each chromosome has a name and a class. The class for a chromosome
is "A" or "X", for autosomes or the X chromosome, respectively.

> names(hyper$geno)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"

[12] "12" "13" "14" "15" "16" "17" "18" "19" "X"

> sapply(hyper$geno, class)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

"A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

16 17 18 19 X

"A" "A" "A" "A" "X"

Each component of geno is itself a list with two components, data

(containing the marker genotype data) and map (containing the positions
of the markers, in cM). The genotype data are coded 1/2 for homozy-
gotes and heterozygotes in a backcross, and 1/2/3/4/5 for the genotypes
AA/AB/BB/not BB/not AA in an intercross.

> names(hyper$geno[[3]])

[1] "data" "map"

> hyper$geno[[3]]$data[91:94,]

D3Mit164 D3Mit6 D3Mit11 D3Mit14 D3Mit44 D3Mit19

91 2 1 1 1 1 1

92 1 1 1 1 1 1

93 NA 2 NA NA NA NA

94 NA 2 NA NA NA NA

> hyper$geno[[3]]$map

D3Mit164 D3Mit6 D3Mit11 D3Mit14 D3Mit44 D3Mit19

2.2 17.5 37.2 44.8 57.9 66.7
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On the X chromosome, all individuals are coded with genotypes 1/2. We
use the phenotypes sex and pgm, if they are available, to recode these as
AA/AB/BB/AY/BY before later analysis. The 1/2 codes simplify the use of
the HMM algorithms (as in calc.genoprob, to calculate genotype probabili-
ties), as all individuals may be treated as a backcross.

That completes the description of the raw data. However, other informa-
tion may exist in a cross object, as when one runs calc.genoprob, sim.geno,
or calc.errorlod, the output is the input cross object with the derived data
attached to each component (the chromosomes) of the geno component.

> names(hyper$geno[[3]])

[1] "data" "map"

> hyper <- calc.genoprob(hyper, step=10, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob"

> hyper <- sim.geno(hyper, step=10, n.draws=2, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob" "draws"

> hyper <- calc.errorlod(hyper, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob" "draws" "errorlod"

The structure of the individual components that were added is relatively self-
explanatory.

Finally, when one runs est.rf, a matrix containing the pairwise recombi-
nation fractions and LOD scores is added to the cross object.

> names(hyper)

[1] "geno" "pheno"

> hyper <- est.rf(hyper)

> names(hyper)

[1] "geno" "pheno" "rf"

The hyper$rf object is a matrix. Values on the diagonal are the number of
individuals that were genotyped for the corresponding marker. Values above
the diagonal are LOD scores for a test of linkage; values below the diagonal
are estimated recombination fractions.

> hyper$rf[1:4,1:4]
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D1Mit296 D1Mit123 D1Mit156 D1Mit178

D1Mit296 92.0000 11.4201 3.1422 0.6321

D1Mit123 0.1413 92.0000 9.9274 0.6321

D1Mit156 0.3043 0.1630 250.0000 2.9045

D1Mit178 0.1667 0.1667 0.2449 49.0000

The function clean.crossmay be used to remove the intermediate results
from a cross object (such as those created with calc.genoprob and est.rf),
as follows.

> hyper <- clean(hyper)

> names(hyper)

[1] "geno" "pheno"

> names(hyper$geno[[3]])

[1] "data" "map"

2.6.2 Genetic map

A genetic map object, as produced by sim.map or as extracted from a cross
object with pull.map, also has a somewhat complex form. We will look at
the data set map10, a genetic map modeled after the mouse genome. Such a
map object has class "map" so that plot and summary will call plot.map and
summary.map, respectively.

> data(map10)

> class(map10)

[1] "map"

The map is a list whose components are the individual chromosomes. Each
chromosome has class either "A" or "X" according to whether it is an autosome
or the X chromosome.

> names(map10)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"

[12] "12" "13" "14" "15" "16" "17" "18" "19" "X"

> sapply(map10, class)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

"A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

16 17 18 19 X

"A" "A" "A" "A" "X"

The individual chromosomes are vectors specifying the marker locations
in cM, with names being the marker names.
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> map10[[15]]

D15M1 D15M2 D15M3 D15M4 D15M5 D15M6 D15M7 D15M8 D15M9

0.00 10.12 20.25 30.38 40.50 50.62 60.75 70.88 81.00

attr(,"class")

[1] "A"

2.7 Further reading

Broman and Heath (2007) discuss the management and manipulation of ge-
netic data. They emphasize the need for biologists to learn to program, and
the value of the Perl programming language for geneticists. While they focus
on human linkage data, the general principles apply to all genetic data

Useful Perl books include Learning Perl (Schwartz et al., 2008) for begin-
ners, Programming Perl (Wall et al., 2000) as a reference, and Perl Cookbook
(Christiansen and Torkington, 2003) for its recipes encompassing many com-
mon tasks. These books, plus a couple of others, may be purchased together
on a CD for a very good price: the Perl CD Bookshelf, available from O’Reilly
Media.

Regarding the χ2 model for crossover interference, see Zhao et al. (1995).
The Stahl model was described in Copenhaver et al. (2002).
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