A brief tour of R/qtl

Karl W Broman

Department of Biostatistics and Medical Informatics
University of Wisconsin — Madison

http://lwww.rqtl.org
24 August 2007

Overview of R/qtl

R/qtl is an extensible, interactive environment for mapgmnantitative trait loci (QTL) in experimental crossesslimple-
mented as an add-on package for the freely available andywided statistical language/software R (see www.r-piayeg).
The development of this software as an add-on to R allows tektadvantage of the basic mathematical and statistinal fu
tions, and powerful graphics capabilities, that are pregtidith R. Further, the user will benefit by the seamless nat@mn of
the QTL mapping software into a general statistical analpsbgram. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rdtia computing.

A key component of computational methods for QTL mappinféshidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main Hijdrithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-knawawimy crosses.

The current version of R/qtl includes facilities for estiing genetic maps, identifying genotyping errors, and gening
single-QTL genome scans and two-QTL, two-dimensional genscans, by interval mapping (with the EM algorithm), Haley
Knott regression, and multiple imputation. All of this mag tbone in the presence of covariates (such as sex, age onéraht
One may also fit higher-order QTL models by multiple impuiati

R/qtl is distributed as source code for Unix or compiled cfudéVindows or Mac OS X. R/qtl is released under the GNU
General Public License. To download the software, you myigteato the terms in that license.

Overview of R

R is an open-source implementation of the S language. Asidledon the R-project homepage (www.r-project.org):

R is a system for statistical computation and graphics. isigis of a language plus a run-time environment with
graphics, a debugger, access to certain system functiodshe ability to run programs stored in script files.

The core of R is an interpreted computer language which allornching and looping as well as modular pro-
gramming using functions. Most of the user-visible funeidn R are written in R. It is possible for the user to
interface to procedures written in the C, C++, or FORTRANglaages for efficiency. The R distribution con-
tains functionality for a large number of statistical prdaees. Among these are: linear and generalized linear
models, nonlinear regression models, time series anabjassical parametric and nonparametric tests, clugterin
and smoothing. There is also a large set of functions whiokige a flexible graphical environment for creating
various kinds of data presentations. Additional modulesaamilable for a variety of specific purposes.

R is freely available for Windows, Unix and Mac OS X, and maydwsvnloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, bwili definitely be worth the effort. Numerous free docunrent
on getting started with R are available on CRAN. In additipsaveral books are available. The most important book on R
is Venables and Ripley (200%Jodern Applied Satistics with S, 4th edition. Dalgaard (2002htroductory Satistics with R
provides a more gentle introduction.

Citation for R/qtl

To cite R/qgtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/gtl: QTL mappiimgexperimental crosses. Bioinformatics
19:889-890

http://www.rqtl.org
http://www.r-project.org
http://www.r-project.org

Selected R/qtl functions

Sample data badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an, fntercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes suixiy
map10 A genetic map modeled after the mouse genome (10 cNhgpac
I nput/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file
Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map
Summaries geno.table Create table of genotype distributions
plot.cross Plot various features of a cross object
plot.missing Plot grid of missing genotypes
plot.pheno Histogram or bar plot of a phenotype
plot.info Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment

summary.map

Print summary of a genetic map

nchr, nind, nmar, nphe, totmar, nmissing

Data manipulation

clean.cross
drop.markers
drop.nullmarkers
fill.geno

pull.map
replace.map
subset.cross
switch.order
movemarker

Remove intermediate calculations from a cross

Remove a list of markers

Remove markers without data
Fill in holes in genotype data by imputation or Viée
Pull out the genetic map from a cross

Replace the genetic map of a cross

Select a subset of chromosomes and/or indisifilom a cross
Switch the order of markers on a chromosome

Move a marker from one chromosome to another

HMM engine argmax.geno Reconstruct underlying genotypes by thebyisdgorithm
calc.genoprob Calculate conditional genotype probaslit
sim.geno Simulate genotypes given observed marker data
QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
lodint Calculate a LOD support interval
bayesint Calculate an approximate Bayes credible interval

plot.scanone
plot.scantwo

Plot output for a one-dimensional genome scan
Plot output for a two-dimensional genome scan

summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
effectplot Plot phenotype means of genotype groups defigddds 2 markers
plot.pxg Like effectplot, but as a dot plot of the phenotypes
Genetic mapping est.map Estimate genetic map
est.rf Estimate pairwise recombination fractions
plot.map Plot genetic map(s)
plot.rf Plot recombination fractions
ripple Assess marker order by permuting groups of adjacenkens

summary.ripple

Print summary of ripple output

Genotypingerrors

calc.errorlod
top.errorlod

Calculate Lincoln & Lander (1992) error LOEbges
List genotypes with highest error LOD values

plot.geno Plot observed genotypes, flagging likely errors
Multiple QTL models makeqtl Make a qtl object for use by fitgtl
fitqtl Fit a multiple QTL model, using multiple imputation
summary:.fitqtl Get summary of the result of fitgtl
scanqtl Perform a multi-dimensional genome scan, usingiphelimputation

2

Preliminaries

Use of the R/qtl package requires considerable knowledtieed® language/environment. We hope that the examplesyiesse
here will be understandable with little prior knowledge oféRpecially because we neglect to explain the syntax of Rergke
books, as well as some free documents, are available td #esisser in learning R; see the R project website cited abdfee
assume here that the user is running either Windows or Mac OS X

1. To start R, double-click its icon.

2. To exit, type:
q0

Click yes or no to save or discard your work.

3. R keeps all of your work in RAM. If R should crash, all will best, and you will have to start from the beginning. The
functionsave.image can be used to save your work to disk as you go along, so that|&R crash, you won't have
to start from scratch. You would type:

save.image()

4. Load the R/qtl package:
library(qtl)

5. View the objects in your workspace:
Is()

6. The best way to get help on the functions and data sets imdRiaR/qtl) is via the html version of the help files. One
way to get access to this is to type
help.start()

This should open a browser with the main help menu. If you thiek on Packages- qtl, you can see all of the available
functions and datasets in R/qtl. For example, look at thp fikel for the functiorread.cross
An alternative method to view this help file is to type one & thllowing:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to matiallow use of hotlinks between different functions.

7. All of the code in this tutorial is available as a file fromialhyou may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.rqtl.org/rgtltour.R")

Dataimport

A difficult first step in the use of most data analysis softwiarhe import of data. With R/qtl, one may import data in sever
different formats by use of the functioead.cross . (Example data files are available at www.rgtl.org/samatiedl The
internal data structure used by R/qtl is rather complicatedl is described in the help file foead.cross . (Also see
example 6, below.) We won'’t discuss data import any furtrerehexcept to say that the comma-delimited formies\(")

is recommended. If you have trouble importing data, sendnaaile¢o Karl Broman kbroman@jhsph.edu), attaching
examples of your data files. (Such data will be kept confidénti

Example 1. Hypertension

As a first example, we consider data from an experiment onrtgmpsion in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your wodesgzand view its help file. These data are included with thel R/q
package, and so you can get access to the data with the fudetia()
data(hyper)

Is()
?hyper

http://www.rqtl.org/sampledata

2. We will postpone discussion of the internal data striectised by R/qtl until later. For now we'll just say that theadat
hyper has “class™cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply useimmary and the data is sent to the appropriate function accordiitg to
class.

summary(hyper)

Several other utility functions are available for gettingrsnary information on the data. Hopefully these are self-
explanatory.

nind(hyper)

nphe(hyper)

nchr(hyper)

totmar(hyper)

nmar(hyper)

3. Plot a summary of these data.

plot(hyper)
In the upper left, black pixels indicate missing genotyptadalote that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lowigraehistogram of the phenotype is shown.

The Windows version of R has a slick method for recording bsapo that one may page up and down through a series
of plots. To initiate this, click (on the menu batl)story — Recording

We may plot the individual components of the above multitfiure as follows.

plot.missing(hyper)
plot.map(hyper)
plot.pheno(hyper, pheno.col=1)

We can plot the genetic map with marker names, but they caatherrdifficult to read. The following code plots the
map with marker names for chr 1, 4, 6, 7 and 15.

plot.map(hyper, chr=c(1, 4, 6, 7, 15), show.marker.names= TRUE)

4. Note the odd pattern of missing data; we may make this ngsata plot with the individuals ordered according to the
value of their phenotype.

plot.missing(hyper, reorder=TRUE)

We see that, for most markers, only individuals with extrgzhenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant irttliais.

5. The functiordrop.nullmarkers may be used to remove markers that have no genotype datagstich marker on
chr 14). A call tototmar will show that there are now 173 markers (rather than 17he=twere initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs ofkers, and plot them. This also calculates LOD scores for the
test of Hy: » = 1/2. The plot of the recombination fractions can be either wétbombination fractions in the upper part
and LOD scores below, or with just recombination fractiongust LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is thearse. Gray indicates missing values.

hyper <- est.rf(hyper)

plot.rf(hyper)

plot.rf(hyper, chr=c(1,4))

There are some very strange patterns in the recombinatetidns, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recoribdimaaction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typéyglon a selected number of individuals (largely those
showing recombination events across the interval).

plot.rf(hyper, chr=6)
plot.missing(hyper, chr=6)

7.

10.

11.

Re-estimate the genetic map (keeping the order of mafiked), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01)
plot.map(hyper, newmap)

We see some map expansion, especially on chr 6, 13 and 18queiionable whether we should replace the map or
not. Keep in mind that the previous map locations are baseallonited number of meioses. If one wished to replace
the genetic map with the estimated one, it could be done s\l

hyper <- replace.map(hyper, newmap)
This replaces the map in tigper data withnewmap

. We now turn to the identification of genotyping errors. he following, we calculate the error LOD scores of Lincoln

and Lander (1992). A LOD score is calculated for each indiglét each marker; large scores indicate likely genotyping
errors.

hyper <- calc.errorlod(hyper, error.prob=0.01)
This calculates the genotype error LOD scores and insezis thto thehyper object.

The functiontop.errorlod gives a list of genotypes that may be in error. Error LOD ssere4 can probably be
ignored.

top.errorlod(hyper)

Note that the results will be different, depending on wheyloel usedeplace.map above. If you did, you will get an
indication of potential errors on chr 16. If you didn’t, youliget an indication of potential errors on chr 1, 11 and 17.

. The functionplot.geno may be used to inspect the observed genotypes for a chronegsath likely genotyping

errors flagged. Of course, it’s difficult to look at too mangiiduals at once. Note that white = AA and black = AB (for
a backcross).

plot.geno(hyper, chr=16, ind=c(24:34, 71:81))

We don't have any utilities for fixing any apparent errorsyaduld be best to go back to the raw data. (Of course, you
should edit a copy of the file; never discard the primary Jata.

The functiorplot.info plots a measure of the proportion of missing genotype in&ion in the genotype data. The
missing information is calculated in two ways: as entropyyia the variance of the conditional genotypes, given the
observed marker data. (See the help file, uSiplgt.info)

plot.info(hyper)

plot.info(hyper, chr=c(1,4,15))

plot.info(hyper, chr=c(1,4,15), method="entropy")
plot.info(hyper, chr=c(1,4,15), method="variance")

We now, finally, get to QTL mapping.

The core of R/qtl is a set of functions which make use of theldidMarkov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint ggme distribution and to calculate the most likely sequesfce
underlying genotypes (all conditional on the observed miadata). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of coios€onvenience we assume no crossover interference.

The functioncalc.genoprob calculates QTL genotype probabilities, conditional onakailable marker data. These
are needed for most of the QTL mapping functions. The argtistep indicates the step size (in cM) at which the
probabilities are calculated, and determines the stepasiaich later LOD scores are calculated.

hyper <- calc.genoprob(hyper, step=1, error.prob=0.01)

We may now use the functioscanone to perform a single-QTL genome scan with a normal model. Wg oz
maximum likelihood via the EM algorithm (Lander and Botst&P89) or use Haley-Knott regression (Haley and Knott
1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and&@lill¢2001). This requires that we first usen.geno
to simulate from the joint genotype distribution, given titeserved marker data. Again, the argunsap indicates
the step size at which the imputations are performed andrdites the step size at which LOD scores will be calculated.

5

12.

13.

14.

15.

16.

17.

18.

The n.draws indicates the number of imputations to perform. Larger @salgive more precise results but require
considerably more computer memory and computation time.

hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob= 0.01)
out.imp <- scanone(hyper, method="imp")

The output of scanone has cldssanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified thoesho

summary(out.em)

summary(out.em, threshold=3)
summary(out.hk, threshold=3)
summary(out.imp, threshold=3)

The functiormax.scanone returns just the highest peak from outpusgcfnone .

max(out.em)
max(out.hk)
max(out.imp)

We may also plot the resultplot.scanone can plot up to three genome scans at once, provided that trdgren
appropriately. Alternatively, one may use the argunasiut.

plot(out.em, chr=c(1,4,15))

plot(out.em, out.hk, out.imp, chr=c(1,4,15))

plot(out.em, chr=c(1,4,15))

plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)

plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

The functiorscanone may also be used to perform a permutation test to get a gemodes-OD significance threshold.
For Haley-Knott regression, this can be quite fast.
operm.hk <- scanone(hyper, method="hk", n.perm=1000)

The permutation output has clascanoneperm” . The functionsummary.scanoneperm can be used to get
significance thresholds.

summary(operm.hk, alpha=0.05)

In addition, if the permutations results are included in htcasummary.scanone , you can estimated genome-scan-
adjusted p-values for inferred QTL, and can get a reportlafrabmosomes meeting a certain significance level, with
the corresponding LOD threshold calculated automatically

summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TR UE)

We should mention at this point that the functgave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

The functiorscantwo performs a two-dimensional genome scan with a two-QTL mdel@l every pair of positions, it

calculates a LOD score for the full model (two QTL plus int#i@an) and a LOD score for the additive model (two QTL
but no interaction). This be quite time consuming, and somiay wish to do the calculations on a coarser grid.

hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
out2.hk <- scantwo(hyper, method="hk")

One can also usmethod="em" or method="imp" , but they are even more time consuming.

The output ofcantwo has clas$scantwo" ; there are functions for obtaining summaries and plotspofse.

The summary function considers each pair of chromosomes;anulates the maximum LOD score for the full model
(M) and the maximum LOD score for the additive mod&l). These two models are allowed to be maximized at
different positions. We futher calculate a LOD score forst td epistasis)/; = My — M,, and two LOD scores that
concern evidence for a second QT is the LOD score comparing the full model to the best singld-@hodel and
M1 is the LOD score comparing the additive model to the bestsiQy L model.

In the summary, we must provide five thresholds, £y, M¢,1, M;, M,, andM,,1, respectively. Call thesgy, Ty,
T;, T,, andT,,,. We then report those pairs of chromosomes for which at meesof the following holds:

6

19.

20.

21.

22.

23.

o My >Tyand Ms, > Trpr OF M; > T5)
L4 Ma Z Ta andMavl Z Ta'ul

The thresholds can be obtained by a permutation test (see}ddut this is extremely time-consuming. For a mouse
backcross, we suggest the thresholds (6.0, 4.7, 4.4, £)fa2 the full, conditional-interactive, interaction,ditive, and
conditional-additive LOD scores, respectively. For a neoinsercross, we suggest the thresholds (9.1, 7.1, 6.33@B,

for the full, conditional-interactive, interaction, atide, and conditional-additive LOD scores, respectiv@lyese were
obtained by 10,000 simulations of crosses with 250 indiaidlumarkers at a 10 cM spacing, and analysis by Haley-Knott
regression.

summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))
The appropriate decision rule is not yet completely cleaaml inclined to ignorelM,; and to choose genome-wide

thresholds for the other four based on a permutation, usiognamon significance level for all fourM; would be
ignored if we gave it a very large threshold, as follows.

summary(out2.hk, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

Plots ofscantwo results are created v@ot.scantwo
plot(out2.hk)
plot(out2.hk, chr=c(1,4,6,15))

By default, the upper-left triangle contains epistasis L&20res and the lower-right triangle contains the LOD scfues
the full model. The color scale on the right indicates sefgasaales for the epistasis and joint LOD scores (on the left
and right, respectively).

The functiormax.scantwo returns the two-locus positions with the maximum LOD scarethe full and additive
models.

max(out2.hk)

One may also uskantwo to perform permutation tests in order to obtain genome-Wwid® significance thresholds.
These can be extremely time consuming, though with the He&fegtt regression and multiple imputation methods,
there is a trick that may be used in some cases to dramatgjdigd things up. So we'll try 100 permutations by the
Haley-Knott regression method and hope that your compsisufficiently fast.

operm2.hk <- scantwo(hyper, method="hk", n.perm=100)

We can again ussummary to get LOD thresholds.

summary(operm2.hk)

And again these may be used in the summary osttantwo output to calculate thresholds and p-values. If you want

to ignore the LOD score for the interaction in the rule aboltxchromosome pairs to report, give= 0, corresponding
to a threshold” = oc.

summary(out2.hk, perms=operm?2.hk, pvalues=TRUE,
alphas=c(0.05, 0.05, 0, 0.05, 0.05))

You can't really trust these results. Haley-Knott regresgierforms poorly in the case of selective genotyping (dls wi
thehyper data). Standard interval mapping or imputation would bésbgbut Haley-Knott regression has the advantage
of speed, which is the reason we use it here.

Finally, we consider the fit of multiple-QTL models. Gamtly, only the use of multiple imputation has been imple-
mented. We first create a QTL object using the functimakeqtl , with five QTL at specified, fixed positions.

chr <- ¢(1, 1, 4, 6, 15)

pos <- ¢(50, 76, 30, 70, 20)

gtl <- makeqtl(hyper, chr, pos)

Finally, we use the functiofitqgtl to fit a model with five QTL, and allowing the QTL on chr 6 and 15rtteract.
my.formula <- y " Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5

out.fitgtl <- fitgti(hyper$pheno[,1], qtl, formula=my.f ormula)

summary(out.fitqtl)

You may wish to clean up your workspace before we move tinetmext example.

Is()
rm(list=Is())

Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapd checking marker orders. In this example, we describasbef
these utilities.

1. Get access to some sample data. This is simulated dataawith errors in marker order.
data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs afkers, and plot them.

badorder <- est.rf(badorder)
plot.rf(badorder)

It appears that markers on chr 2 and 3 have been switched.

Also note that, if we look more closely at the recombinatiactions for chr 1, there seem to be some errors in marker
order.

plot.rf(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plot.map(badorder, newmap)

This really shows the problems on chr 2 and 3.

4. Fix the problems on chr 2 and 3. First, we look more closttii@recombination fractions for these chromosoems
plot.ri(badorder, chr=2:3)

We need to move the sixth marker on chr 2 to chr 3, and the fifttkenan chr 3 to chr 2. We need to figure out which
markers these are.

pull.map(badorder, chr=2)
pull.map(badorder, chr=3)

Now we can use the functianovemarker to move the markers. It seems like they should be exactlycheit.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

Now look at the recombination fractions again.
plot.ri(badorder, chr=2:3)

5. We can check the marker order on chr 1. The functipple will consider all permutations of a sliding window of
adjacent markers. A quick-and-dirty approach is to couatrthmber of obligate crossovers for each possible order,
to find the order with the minimum number of crossovers. A mmefined, but also more computationally intensive,
approach is to re-estimate the genetic map for each ordeylaang LOD scores (log likelihood ratios) relative to
the initial order. (This may be done with allowance for thegance of genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chr 1, permutingigeoof six contiguous markers.

ripl <- ripple(badorder, chr=1, window=6)
summary(ripl)

In the summary output, markers 9-11 clearly need to be flipféttre also seems to be a problem with the order of
markers 4-6.

6. The following performs the likelihood analysis, permgtgroups of three adjacent markers, assuming a genotyping e
rate of 1%. It's considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternadieionas a higher likelihood than the original.

7. We can switch the order of markers 9-11 with the functwitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second ripd o corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
riplr <- ripple(badorder.rev, chr=1, window=6)
summary(riplr)

It looks like the marker pairs (5,6) and (1,2) should eachriverited. We usswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, riplr[2,])
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It's probably best to start out using the quick-and-dirtytinoel, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refiasoitier using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for thimmosome.

badorder.rev <- est.rf(badorder.rev)
plot.rf(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the funcioanone , we consider some data on susceptibilitytsteria monocyto-
genesin mice (Boyartchuk et al., Nature Genetics 27:259-260,1200hese data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)

summary(listeria)

plot(listeria)

plot.missing(listeria)

Note that in the missing data plot, gray pixels are partialigsing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hootl\ing infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recal/&mm the infection.

2. We'll use the log survival time, rather than survival tinse we first need to create a new phenotype, which will end up
as the third phenotype (aftsex).

listeria$pheno$logSurv <- log(listeria$phenol,1])
plot(listeria)

3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plot.rf(listeria)
plot.rf(listeria, chr=c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria, error.prob=0.01)
plot.map(listeria, newmap)
listeria <- replace.map(listeria, newmap)

5. Investigate genotyping errors; nothing gets flagged avithtoff of 4, but one genotype is indicated with error LOB.6.

listeria <- calc.errorlod(listeria, error.prob=0.01)
top.errorlod(listeria)

top.errorlod(listeria, cutoff=3.5)

plot.geno(listeria, chr=13, ind=61:70, cutoff=3.5)

Note that in the plot given bplot.geno , for an intercross, white = AA, gray = AB, black = BB, green = AAAB,
and orange = AB or BB.

6. Now on to the QTL mapping. Recall that the phenotype distion shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived londeart 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part modeldsmesi by Boyartchuk et al. (2001). In this model, a
mouse with genotypg has probabilityp, of surviving the infection. If it does die, its log survivairte is assumed to
be distributed normal(,,c%). Analysis proceeds by maximum likelihood via an EM aldurit Three LOD scores are
calculated. LODY, 1) is for the test of the null hypothesig = p andu, = . LOD(p) is for the test of the hypothesis
pg = p but they are allowed to vary. LODY) is for the test of the hypothesig, = p but thep are allowed to vary.

The functionscanone will fit the above model when the argumembdel="2part" . One must also specify the
argumentpper , which indicates whether the spike in the phenotype is themam phenotype (as it is with this phe-
notype; takaupper=TRUE) or the minimum phenotype (takeper=FALSE). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=3, model="2part", upper=TRUE)

Note that, because this model has three extra parameterapgropriate LOD threshold is higher—around 4.5 rather
than 3.5. The three different LOD curves are in columns 3-thefoutput. We can use thhedcolumn argument to
plot.scanone to plot these other LOD scores.

summary(out.2p)
summary(out.2p, threshold=4.5)

Alternatively, we may uséormat="allpeaks" , in which case it displays the maximum LOD score or each calum
with the position at which each was maximized. You may prewither one threshold, which would be applied to all
LOD score columns, or a separate threshold for each column.

summary(out.2p, format="allpeaks", threshold=3)
summary(out.2p, format="allpeaks", threshold=c(4.5,3, 3))

7. By default,plot.scanone will plot the first LOD score column. Alternatively, we mayditate another column to
plot with thelodcolumn argument. Or we can plot up to three LOD scores at once bygwaivector.

plot(out.2p)
plot(out.2p, lodcolumn=2)
plot(out.2p, lodcolumn=1:3, chr=c(1,5,13,15))

Note that the locus on chr 1 shows effect mostly on the meae-tovdeath, conditional on death; the locus on chr 5
shows effect mostly on the probability of survival; and theilon chr 13 and 15 shows some effect on each.

8. Permutation tests may be performed as before. The outifittave three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 3,
upper=TRUE, n.perm=25)
summary(operm.2p, alpha=0.05)

We may again use the permutation resultsimmary.scanone to have thresholds calculated automatically and to
obtain genome-scan-adjusted p-values, but of course wilwa@nt to have performed more than 25 permutations.

summary(out.2p, format="allpeaks", perms=operm.2p,
alpha=0.05, pvalues=TRUE)

9. Alternatively, one may perform separate analyses ofdgaurvival time, conditional on death, and the binary plgm®
survival/death. First we set up these phenotypes.

y <- listeria$pheno$logSurv
my <- max(y, na.rm=TRUE)
z <- as.numeric(y==my)
yly==my] <- NA
listeria$pheno$logSurv2 <- y
listeria$pheno$binary <- z
plot(listeria)

We use standard interval mapping for the log survival timeditional on death; the results are slightly different from
LOD(u).

10

10.

out.mu <- scanone(listeria, pheno.col=4)
plot(out.mu, out.2p, lodcolumn=c(1,3), chr=c(1,5,13,15), col=c("blue","red"))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are sligjt
different from LODg).

out.p <- scanone(listeria, pheno.col=5, model="binary")
plot(out.p, out.2p, lodcolumn=c(1,2), chr=c(1,5,13,15) , col=c("blue","red"))

A further approach is to use a non-parametric form ofrualemapping. R/qgtl uses an extension of the Kruskal-Wallis
test statistic. Usscanone with model="np" . In this case, the argumemtethod is ignored; the analysis method
is much like Haley-Knott regression. If the arguméas.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE |, tied phenotypes are given the average rank and a corréstamplied to the LOD score.

out.npl <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)

plot(out.np1, out.np2, col=c("blue","red"))
plot(out.2p, out.npl, out.np2, chr=c(1,5,13,15))

Note that the significance threshold for the non-parameggitome scan will be quite a bit smaller than that for the
two-part model. The two approaches for dealing with tieg d¢pasically the same results. Randomizing ties for the non-
parametric approach can give quite variable results indlse of a great number of ties, and so we would recommend the
use ofties.random=FALSE in this case.

Example4: Covariatesin QTL mapping

As a further example, we illustrate the use of covariatesTih @apping. We consider some simulated backcross data.

1.

Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

. Perform genome scans for the two phenotypes without zdear

fake.bc <- calc.genoprob(fake.bc, step=2.5)
out.nocovar <- scanone(fake.bc, pheno.col=1:2)

. Perform genome scans with sex as an additive covariate. tNat the covariates must be numeric. Factors may have to

be converted.

sex <- fake.bc$pheno$sex
out.acovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex)

Here, the average phenotype is allowed to be different itvtloesexes, but the effect of the putative QTL is assumed to
be the same in the two sexes.

. Note that the use of sex as an additive covariate resuitad increase in the LOD scores for phenotype 1, but resulted

in a decreased LOD score at the chr 5 locus for phenotype 2.

summary(out.nocovar, threshold=3, format="allpeaks")
summary(out.acovar, threshold=3, format="allpeaks")

plot(out.nocovar, out.acovar, chr=c(2, 5))
plot(out.nocovar, out.acovar, chr=c(2, 5), lodcolumn=2)

. Let us now perform genome scans with sex as an interacivariate, so that the QTL is allowed to be different in the

two sexes.
out.icovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex, intcovar=sex)

. The LOD score in the output is for the comparison of therfudidel with terms for sex, QTL and QHsex interaction

to the reduced model with just the sex term. Thus, the de@fdesedom associated with the LOD score is 2 rather than
1, and so larger LOD scores will generally be obtained.

summary(out.icovar, threshold=3, format="allpeaks")

11

plot(out.acovar, out.icovar, chr=c(2,5), col=c("blue", "red")
plot(out.acovar, out.icovar, chr=c(2,5), lodcolumn=2,
col=c("blue", "red"))

7. The difference between the LOD score with sex as an irtfeeacovariate and the LOD score with sex as an additive
covariate concerns the test of the Qd&ex interaction: does the QTL have the same effect in bo#s®eXhe differences,
and a plot of the differences, may be obtained as follows.
out.sexint <- out.icovar - out.acovar
plot(out.sexint, lodcolumn=1:2, chr=c(2,5), col=c("gre en", "purple™)

The green and purple curves are for the first and second pfpasytrespectively.

8. To test for the QTkxsex interaction, we may perform a permutation test. Thisoisperfect, as the permutation test
eliminates the effect of the QTL, and so we must assume tleadigtribution of the LOD score for the Q™ sex
interaction is the same in the presence of a QTL as under tibaighull hypothesis of no QTL effect.

The permutation test requires some care. We must perforarateppermutations with sex as an additive covariate and
with sex as an interactive covariate, but we must ensuregtting the “seed” for the random number generator, that they
use matched permutations of the data.

For the sake of speed, we will use Haley-Knott regressioanetiough the results above were obtained by standard
interval mapping. Also, we will perform just 100 permutaitsp though 1000 would be preferred.

seed <- ceiling(runif(1, 0, 107°8))

set.seed(seed)

operm.acovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
method="hk", n.perm=100)

set.seed(seed)

operm.icovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
intcovar=sex, method="hk", n.perm=100)

Again, the differences concern the QXkex interaction.

operm.sexint <- operm.icovar - operm.acovar

We can ussummary to get the genome-wide LOD thresholds.

summary(operm.sexint, alpha=c(0.05, 0.20))

We can also use these results to look at evidence for<EX interaction in our initial scans.

summary(out.sexint, perms=operm.sexint, alpha=0.1,
format="allpeaks", pvalues=TRUE)

Example5: Multiple QTL mapping

We return to thényper data to illustrate some of the more advanced methods fooarglmultiple QTL models. Note
that the multiple QTL mapping features are currently impdated only for the multiple imputation method, and some etspe
remain quite cumbersome. Also, we will rely here on funditirat are not yet available in the released version of Rigikse
functions are available at www.rgtl.org/multqtifunt.R.

The multiple-QTL aspects of R/qtl are under active develepnfas they should be!), and so the methods used below will
hopefully be improved in the near future. Our aim here is t@ @i flavor of what is possible.

1. First, let us delete everything in our workspace and teeoad thenyper data.
rm(list=Is())
data(hyper)

2. Now let’s load the additional, developmental functiomsrhultiple QTL mapping.
source("http://www.rqgtl.org/multgtifunc.R")

3. We will be using the multiple imputation method througtthis example, and so we first need to perform the imputations
Recall that more imputations give more precise resultstdkg more time and memory. To speed things along, we will
use only 16 imputations, even though much more would be mEfeda definitive analysis.

hyper <- sim.geno(hyper, step=2.5, n.draws=16, err=0.01)

12

http://www.rqtl.org/multqtlfunc.R

10.

. We first perform a single-QTL genome scan and inspect thétee

outl <- scanone(hyper, method="imp")
plot(outl)

As you'll recall from the results in Example 1, we have cleadence for a QTL on chr 4, and strong evidence for a QTL
on chr 1. The LOD curve on chr 1 has an interesting double ajgestive of possibly two QTL.

There is a hint of further loci on chr 6 and 15 and elsewhere.

. In the presence of a large-effect QTL, as seen on chr 4, @yewish to repeat the scan, controlling for that locus. This

can make the loci with more modest effect more apparent.

A simple (but rough) approach is to pull out the genotypesafanarker near the peak locus, and use that marker as an
additive covariate in a single-QTL scan. The peak marketifese data was D4Mit164:

max(outl)
If the peak LOD score is not at a marker, we may fisé.marker to identify the marker closest to the LOD peak.
find.marker(hyper, 4, 29.5)

. The functiorpull.geno may be used to pull out the genotype data for that marker, biit gee that most individuals

were not typed at D4Mit164.

g <- pull.geno(hyper)[,"D4Mit164"]
mean(is.na(g))

We may fill in the genotype data using a single imputation,thed use those imputed genotypes as if they were observed.
This is not ideal; we’ll do this analysis properly (thougtlwimore complex code) below.

g <- pull.geno(fill.geno(hyper))[,"D4Mit164"]

. Now we perform the genome scan, controlling for the chroi$o (Note that in an intercross, we would have to re-code

the genotype data to be a two-column numeric matrix.)
outl.c4 <- scanone(hyper, method="imp", addcovar=g)
We can plot the results together with the original genoma.sca
plot(outl, outl.c4, col=c("blue", "red"))

The LOD curve on chr 1 went up quite a bit. (And, of course, t@¥Lcurve on chr 4 went down to near 0.) To see the
effect of controlling for the chr 4 locus more clearly, we qdot the differences between the LOD scores.

plot(outl.c4 - outl, ylim=c(-3,3))

abline(h=0, Ity=2, col="gray")

. We may also look for loci that interact with the chr 4 locoig,including marker D4Mit164 as an interactive covariate.

outl.c4i <- scanone(hyper, method="imp", addcovar=g, int covar=g)

The difference between these LOD scores and those obtaiileddMit164 as a strictly additive covariate indicates
evidence for an interaction with the chr 4 locus.

plot(outl.c4i - outl.c4)
There is nothing particularly interesting here.

. Now let us perform a 2d scan. This will take a few minutesy@se doing the scan at a 2.5 cM step size.

out2 <- scantwo(hyper, method="imp")

Let us look at some summaries for rantwo results. Recall that we need to provide five thresholds (seeple 1).
We'll ignore the threshold on the epistasis LOD scdrgand use the thresholds suggested above.
summary(out2, thr=c(6.0, 4.7, Inf, 4.7, 2.6))

Your results may be different from mine, since we are usinfeaoimputations, but | see evidence for loci on chr 1 and
4 (which don’t appear to interact) and loci on chr 6 and 15 @ilto show evidence of epistasis).

This didn’t pick up evidence for two QTL on chr 1; we can looketitly at the chr 1 results as follows.
summary(subset(out2, chr=1))
The LOD score for a second, additive QTL on chr 2 (LQD is ~1.6; not strong, but not uninteresting.

13

11.

12.

13.

Evidence for an interaction between loci on chr 7 and 15 had Ipeeviously reported. Those results may be inspected
as follows.

summary(subset(out2, chr=c(7,15)))
Again, this is interesting but not strong.

Let us look at some plots of tlseantwo results. First we make the standard plot with selected chsmmes; the upper
triangle contains LOPand the lower triangle contains LQD
plot(out2, chr=c(1,4,6,7,15))

The argumentwer andupper may be used to change what is plotted in the upper and loveergies. For example,
with lower="cond-int" , LOD¢,1 (evidence for a second QTL, allowing for epistasis) is digptl in the lower
triangle, while withlower="cond-add" ,LOD,,; (evidence for a second QTL, assuming no epistasis) is gisgla

plot(out2, chr=1, lower="cond-add")

plot(out2, chr=c(6,15), lower="cond-int")

plot(out2, chr=c(7,15), lower="cond-int")

Again, evidence for a second QTL on chr 1 is not strong. Exéddnor interacting QTL on chr 6 and 15 is quite strong;
the 7x 15 interaction is not.

We can also perform the 2d scan conditional on the chruslod/e’ll do this just for chr 1, 6, 7, and 15, to save time.
out2.c4 <- scantwo(hyper, method="imp", addcovar=g, chr= c(1,6,7,15))

If we look at the same summaries as before, we see decreaseti@y for a second QTL on chr 1 and for thelIb
interaction, but increased evidence for thelfs interaction.

summary(out2.c4, thr=c(6.0, 4.7, Inf, 4.7, 2.6))
summary(subset(out2.c4, chr=1))
summary(subset(out2.c4, chr=c(7,15)))

The sort of plots we made before remain interesting.

plot(out2.c4, chr=c(1,4,6,7,15))

plot(out2.c4, chr=1, lower="cond-int")

plot(out2.c4, chr=c(6,15), lower="cond-int")

plot(out2.c4, chr=c(7,15), lower="cond-int")

We can also look at the differences in the LOD scores, to seerhoch conditioning on D4Mit164 has affected the
results. We need to subset our original results, since wesmanned selected chromosomes in the conditional analysis
Theallow.neg argument is used to allow negative LOD scores ingbantwo plot, as they would generally be
replaced with 0.

out2sub <- subset(out2, chr=c(1,6,7,15))

plot(out2.c4 - out2sub, allow.neg=TRUE, lower="cond-int "

Now let us turn to the fit of multiple-QTL models. The fuioctfitqtl is used to fit a specific model.

One must first pull out the data on fixed QTL locations usimakeqtl . We will consider the possibility of two QTL on
chr 1, but will ignore the putative QTL on chr 7. Also note tffiédtl takes a vector of phenotypes as input, and so
we pull that from thenyper data to make things simpler.

gc <- c(1, 1, 4, 6, 15)
gp <- c(43.3, 78.3, 30.0, 62.5, 18.0)
gtl <- makeqtl(hyper, chr=gc, pos=qgp)
phe <- hyper$pheno[,1]

We also create a “formula” which indicates which QTL are tari@uded in the fit and which interact.
myformula <- y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5
We can now fit a model, including the<d 5 interaction, and get a summary of the results.

out.fq <- fitgtl(phe, qtl, formula = myformula)
summary(out.fq)

The first part of the summary describes the overall fit; the L$8bre of~23 is the log, likelihood ratio comparing the
full model to the null model.

14

14.

15.

16.

17.

The second part of the summary gives results dropping ome &tra time from the model. In the presence of an
interaction, if a term included in the interaction is onlttéhe interaction is also omitted, and so the rows for thedac
chr 6 and 15 indicate 2 degrees of freedom.

One may also ud#qtl to get estimated effects of the QTL in the context of the mldQTL model. We can use
drop=FALSE , so that the “drop one at a time” part of the analysis is notguered, andyet.ests=TRUE to get the
estimated effects.

out.fq <- fitgtl(phe, qtl, formula = myformula, drop=FALSE , get.ests=TRUE)
summary(out.fq)

The estimated effects are the differences between thedzgtgste and homozygote groups. The interaction effect is of
the difference between the differences.

The functiorrefineqtl (developmental code in tHenultgtlfunc.R" file that we loaded earlier) can be used to
refine the estimated positions of the QTL in the context ofrthetiple-QTL model.
out.rqg <- refineqtl(hyper, chr=qc, pos=gp, formula = myfor mula)

The output has two columns: the chromosome IDs and new positf the QTL. For me, a couple of the QTL moved,
but very slightly:

qp - outrq[,2]

We can re-rumakeqtl andfitqtl to get a fit with the new positions; the overall LOD score sddwve increased
slightly. (For me, it increased from 23.0 to 23.7.)

gp2 <- out.rq[,2]

gtl2 <- makeqtl(hyper, chr=qc, pos=qp2)

out.fg2 <- fitgtl(phe, qtl2, formula=myformula)

summary(out.fq2)

Thescangtl function is used to perform general genome scans in the xoote multiple QTL model. It is quite
flexible, but not simple to use.

We will first usescangtl to perform a more precise version of our genome scan, condition the chr 4 locus.
Previously, we had conditioned on imputed genotypes at &enaear the LOD peak on chr 4. Witltanqgtl we can

do this properly: take proper account of the missing gemoigformation at the chr 4 locus, rather than taking genatype
from a single imputation as if they had been observed.

Like makeqtl , the scangtl function takes the chromosome and positions of a set of Q$lwell as a formula
indicating which QTL interact. If the formula is omitted| kdci are assumed to be additive. The QTL positions may be a
single number (in which case the QTL location is fixed) or darval (in which case a scan over that region is performed.

And so, the following performs a scan on all of chr 1 (indichtg (-Inf,Inf)) with a QTL on chr 4 fixed at 29.5 cM.
outl.sq <- scanqtl(hyper, chr=c(1,4), pos = list(c(-Inf,l nf), 29.5))

The output contains LOD scores comparing the two-QTL manlthé null model. If we want the LOD score comparing
the two-QTL model to the model with just the chr 4 locus, wedhteesubtract off the LOD score for the latter, single-QTL
model.

The output olscangtl is not simple to work with (yet), but thenultqtlfunc.R" file we loaded earlier contains a
functionconvert.scanqtl that will convert the output to an object of the form produbgdcanone orscantwo .

And so, we first calculate the LOD score for the model with gl&®QTL on chr 4, and then use the functammvert.scanqtl
to convert thescangtl output to a more useable form.

null <- scanqgtl(hyper, chr=4, pos=list(29.5))
outl.c4r <- convert.scangtl(outl.sq, null)

We may now plot these results with those obtained earliee. r€kults are not actually too different.

plot(outl.c4, outl.c4r, col=c("blue”, "red"), chr=1)

The same approach may be used to perform a 2d scan on abmditiening on the locus on chr 4. We need to use
scangtl twice, once with an additive model and once with the full mdteo QTL plus interaction).

out2.sg.add <- scanqtl(hyper, chr=c(1,1,4),
pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5))
out2.sq.full <- scanqtl(hyper, chr=c(1,1,4),

15

18.

19.

pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5),
formula=y"Q1+Q2+Q3+Q1:Q2)

We again useonvert.scanqtl to convert the output to a more useable form.
out2.c4r <- convert.scangtl(out2.sq.full, null, out2.sq .add)

We can plot the difference between these results and ourgpievesults; we first need to subset the old results, since
here we have just looked at chr 1.

out2.c4sub <- subset(out2.c4, chr=1)
plot(out2.c4sub - out2.c4r, lower="cond-add", allow.neg =TRUE)

Again, things have hardly changed.

Finally, let us usecangtl to scan for additional loci. Let us take the five-QTL modeltfwihe loci on 6 and 15
interacting) as fixed, and look to add a further locus. Herrefq2 is taken as the null model, and we must scan each
chromosome, one at a time, for a further locus. We'll skipXhghromosome.
The syntax of the QTL positions is perhaps most tricky. Weihout much knowledge of R, this is all likely mysterious.
newpos <- c(as.list(qp2), list(c(-Inf, Inf)))
out.sq <- NULL
for(i in 1:19) {

cat("Chr ", i, "\n")

temp <- scangtl(hyper, chr=c(qc,i), pos=newpos,

formula = y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6)
out.sq <- rbind(out.sq, convert.scangtl(temp, out.fq2))

}

The resultput.sq , is just like the output fronscanone , and so we may plot it as follows:
plot(out.sq)

We may use the same approach to look for additional l@tirtiight interact with the locus on chr 15. The code is the
same, but we add the additional interaction to the formula.
out.sqi <- NULL
for(i in 1:19) {

cat("Chr ", i, "\n")

temp <- scanqgtl(hyper, chr=c(qc,i), pos=newpos,

formula = y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6 + Q5:Q6)
out.sgi <- rbind(out.sqi, convert.scanqtl(temp, out.fq2)

}

We can plot the results (which indicate evidence for an @mtthl QTL, allowing for epistasis), or the differences beém
these and our previous ones, which concern just the interact

plot(out.sqi)
plot(out.sqi - out.sq)

The possible ¥ 15 interaction is by far the most interesting thing going eneh

16

Example 6: Internal data structure

Finally, let us briefly describe the rather complicated ddtacture that R/qtl uses for QTL mapping experiments. Whilisbe
rather dull, and will require a good deal of familiarity withe R (or S) language. The choice of data structure requaoetes
balance between ease of programming and simplicity for fee imterface. The syntax for references to certain pietteo
internal data can become extremely complicated.

1.

Get access to some sample data.
data(fake.bc)

. First, the object has a “class,” which indicates that itresponds to data for an experimental cross, and gives the

cross type. By having claggoss , the functiongplot andsummary know to send the data folot.cross and
summary.cross

class(fake.bc)

. Everycross object has two components, one containing the genotypeatiatgenetic maps and the other containing

the phenotype data.
names(fake.bc)

. The phenotype data is simply a matrix (more strictly a da@ae) with rows corresponding to individuals and columns

corresponding to phenotypes.
fake.bc$pheno[1:10,]

. The genotype data is a list with components corresportdingromosomes. Each chromosome has a name and a class.

The class for a chromosome is eitliai' or"X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

. Each component @feno contains two componentdata (containing the marker genotype data) anap (containing

the positions of the markers, in cM).

names(fake.bc$genol[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That's it for the raw data.

. When one runsalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross

object with the derived data attached to each componentfittenosomes) of thgeno component.

names(fake.bc$genol[[3]])

fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])

fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$genol[3]])

fake.bc <- calc.errorlod(fake.bc, err=0.01)

names(fake.bc$genol[[3]])

. Finally, when one runest.rf | a matrix containing the pairwise recombination fractiansl LOD scores is added to

the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)

17

