
A brief tour of R/qtl

Karl W Broman

Department of Biostatistics and Medical Informatics
University of Wisconsin – Madison

http://www.rqtl.org

21 March 2012

Overview of R/qtl

R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTL) in experimental crosses. Itis imple-
mented as an add-on package for the freely available and widely used statistical language/software R (see www.r-project.org).
The development of this software as an add-on to R allows us totake advantage of the basic mathematical and statistical func-
tions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of
the QTL mapping software into a general statistical analysis program. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rather than computing.

A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main HMMalgorithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-known four-way crosses.

The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing
single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-
Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment).
One may also fit higher-order QTL models by multiple imputation and Haley-Knott regression.

R/qtl is distributed as source code for Unix or compiled codefor Windows or Mac OS X. R/qtl is released under the GNU
General Public License, version 3. To download the software, you must agree to the terms in that license.

Overview of R

R is an open-source implementation of the S language. As described on the R-project homepage (www.r-project.org):

R is a system for statistical computation and graphics. It consists of a language plus a run-time environment with
graphics, a debugger, access to certain system functions, and the ability to run programs stored in script files.

The core of R is an interpreted computer language which allows branching and looping as well as modular pro-
gramming using functions. Most of the user-visible functions in R are written in R. It is possible for the user to
interface to procedures written in the C, C++, or FORTRAN languages for efficiency. The R distribution con-
tains functionality for a large number of statistical procedures. Among these are: linear and generalized linear
models, nonlinear regression models, time series analysis, classical parametric and nonparametric tests, clustering
and smoothing. There is also a large set of functions which provide a flexible graphical environment for creating
various kinds of data presentations. Additional modules are available for a variety of specific purposes.

R is freely available for Windows, Unix and Mac OS X, and may bedownloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, but it will definitely be worth the effort. Numerous free documents
on getting started with R are available on CRAN. In additional, several books are available. The most important book on R
is Venables and Ripley (2002)Modern Applied Statistics with S, 4th edition. Dalgaard (2002)Introductory Statistics with R
provides a more gentle introduction.

Citation for R/qtl

To cite R/qtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mappingin experimental crosses. Bioinformatics
19:889-890

1

http://www.rqtl.org
http://www.r-project.org
http://www.r-project.org

Selected R/qtl functions

Sample data badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an F2 intercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes susceptibility
map10 A genetic map modeled after the mouse genome (10 cM spacing)

Input/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file

Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map

Summaries qtlversion Gives the version number of installed R/qtl package
plot.cross Plot various features of a cross object
plotMissing Plot grid of missing genotypes
geno.image Plot grid with colored pixels representing different genotypes
plotPheno Histogram or bar plot of a phenotype
plotInfo Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment
summaryMap Print summary of a genetic map
nchr, nind, nmar, nphe, totmar, nmissing, ntyped
find.pheno Find the column number for a particular phenotype
find.marker Find the marker closest to a specified position
find.flanking Find the markers flanking a particular position
find.pseudomarker Find the name of the grid position closestto a particular position
find.markerpos Find the map positions of a marker

Data manipulation clean.cross Remove intermediate calculations from a cross
drop.markers Remove a list of markers
drop.nullmarkers Remove markers without data
fill.geno Fill in holes in genotype data by imputation or Viterbi
strip.partials Replace partially informative genotypes with missing values
pull.map Pull out the genetic map from a cross
pull.geno Pull out the genotype data as a matrix
pull.pheno Pull out a phenotype
replace.map Replace the genetic map of a cross
jittermap Jitter marker positions slightly so that no two coincide
subset.cross Select a subset of chromosomes and/or individuals from a cross
c.cross Combine two crosses into one object
switch.order Switch the order of markers on a chromosome
movemarker Move a marker from one chromosome to another

HMM engine argmax.geno Reconstruct underlying genotypes by the Viterbi algorithm
calc.genoprob Calculate conditional genotype probabilities
sim.geno Simulate genotypes given observed marker data

Diagnostics geno.table Create table of genotype distributions
geno.crosstab Create cross-tabulation of genotypes at twomarkers
checkAlleles Identify markers with potentially switched alleles
calc.errorlod Calculate Lincoln & Lander (1992) error LOD scores
top.errorlod List genotypes with highest error LOD values
plotGeno Plot observed genotypes, flagging likely errors
comparecrosses Compare two cross objects, to see if they arethe same
comparegeno Calculate proportion of matching genotypes for each pair of individuals

2

Selected R/qtl functions (continued)

Genetic mapping est.rf Estimate pairwise recombination fractions
plotRF Plot recombination fractions
est.map Estimate genetic map
plotMap Plot genetic map(s)
summaryMap Print summary of a genetic map
ripple Assess marker order by permuting groups of adjacent markers
summary.ripple Print summary of ripple output
compareorder Compare two orderings of markers on a chromosome
tryallpositions Test all possible positions for a marker

QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
lodint Calculate a LOD support interval
bayesint Calculate an approximate Bayes credible interval
scanoneboot Non-parametric bootstrap to obtain a confidence interval for QTL location
plot.scanone Plot output for a one-dimensional genome scan
add.threshold Add a horizontal line at a LOD threshold to a genome scan plot
plot.scantwo Plot output for a two-dimensional genome scan
summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
max.scanone Maximum peak in scanone output
max.scantwo Maximum peak in scantwo output
effectplot Plot phenotype means of genotype groups defined by 1 or 2 markers
effectscan Plot estimated QTL effects across the whole genome
plotPXG Like effectplot, but as a dot plot of the phenotypes

Multiple QTL models makeqtl Make a qtl object for use by fitqtl
fitqtl Fit a multiple QTL model
summary.fitqtl Get summary of the result of fitqtl
scanqtl Perform a multi-dimensional genome scan
refineqtl Refine the QTL locations in a multiple QTL model
plotLodProfile Plot 1-dimensional LOD profiles for a multiple QTL model
addqtl Scan for an additional QTL, in a multiple-QTL model
addpair Scan for an additional pair of QTL, in a multiple-QTLmodel
addint Add pairwise interactions, one at a time, in a multiple-QTL model
summary.qtl Print a summary of a QTL object
plot.qtl Plot the QTL locations on the genetic map
addtoqtl Add to a QTL object
dropfromqtl Drop a QTL from a QTL object
replaceqtl Replace a QTL location in a QTL object with a different position
reorderqtl Reorder the QTL in a QTL object
cim A (relatively crude) implementation of Composite Interval Mapping
stepwiseqtl Stepwise selection for multiple QTL
calc.penalties Calculate penalties for use with stepwiseqtl
plotModel Plot a graphical representation of a multiple-QTL model

3

Preliminaries

Use of the R/qtl package requires considerable knowledge ofthe R language/environment. We hope that the examples presented
here will be understandable with little prior knowledge of R, especially because we neglect to explain the syntax of R. Several
books, as well as some free documents, are available to assist the user in learning R; see the R project website cited above. We
assume here that the user is running either Windows or Mac OS X.

1. To start R, double-click its icon.

2. To exit, type:

q()

Click yes or no to save or discard your work.

3. R keeps all of your work in RAM. If R should crash, all will belost, and you will have to start from the beginning. The
functionsave.image can be used to save your work to disk as you go along, so that, should R crash, you won’t have
to start from scratch. You would type:

save.image()

4. Load the R/qtl package:

library(qtl)

5. View the objects in your workspace:

ls()

6. The best way to get help on the functions and data sets in R (and in R/qtl) is via the html version of the help files. One
way to get access to this is to type

help.start()

This should open a browser with the main help menu. If you thenclick onPackages→ qtl, you can see all of the available
functions and datasets in R/qtl. For example, look at the help file for the functionread.cross .

An alternative method to view this help file is to type one of the following:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to read,and allow use of hotlinks between different functions.

7. All of the code in this tutorial is available as a file from which you may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.rqtl.org/rqtltour.R")

Data import

A difficult first step in the use of most data analysis softwareis the import of data. With R/qtl, one may import data in
several different formats by use of the functionread.cross . (Example data files are available at www.rqtl.org/sampledata.)
The internal data structure used by R/qtl is rather complicated, and is described in the help file forread.cross . (Also see
Example 6 on page 19.) We won’t discuss data import any further here, except to say that the comma-delimited format ("csv")
is recommended. If you have trouble importing data, send an email to Karl Broman (kbroman@biostat.wisc.edu),
attaching examples of your data files. (Such data will be keptconfidential.)

Example 1: Hypertension

As a first example, we consider data from an experiment on hypertension in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your workspace, and view its help file. These data are included with the R/qtl
package, and so you can get access to the data with the function data() . (Remember that you first need to load the
R/qtl package vialibrary(qtl) .)

data(hyper)
ls()
?hyper

4

http://www.rqtl.org/sampledata

2. We will postpone discussion of the internal data structure used by R/qtl until later. For now we’ll just say that the data
hyper has “class”"cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply usesummary and the data is sent to the appropriate function according toits
class.

summary(hyper)

Several other utility functions are available for getting summary information on the data. Hopefully these are self-
explanatory.

nind(hyper)
nphe(hyper)
nchr(hyper)
totmar(hyper)
nmar(hyper)

3. Plot a summary of these data.

plot(hyper)

In the upper left, black pixels indicate missing genotype data. Note that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lower left, a histogram of the phenotype is shown.

The Windows version of R has a slick method for recording graphs, so that one may page up and down through a series
of plots. To initiate this, click (on the menu bar)History→ Recording.

We may plot the individual components of the above multi-plot figure as follows.

plotMissing(hyper)
plotMap(hyper)
plotPheno(hyper, pheno.col=1)

We can plot the genetic map with marker names, but they can be rather difficult to read. The following code plots the
map with marker names for chr 1, 4, 6, 7 and 15.

plotMap(hyper, chr=c(1, 4, 6, 7, 15), show.marker.names=T RUE)

4. Note the odd pattern of missing data; we may make this missing data plot with the individuals ordered according to the
value of their phenotype.

plotMissing(hyper, reorder=TRUE)

We see that, for most markers, only individuals with extremephenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant individuals.

5. The functiondrop.nullmarkers may be used to remove markers that have no genotype data (suchas the marker on
chr 14). A call tototmar will show that there are now 173 markers (rather than 174, as there were initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs of markers, and plot them. This also calculates LOD scores for the
test of H0: r = 1/2. The plot of the recombination fractions can be either with recombination fractions in the upper part
and LOD scores below, or with just recombination fractions or just LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is the reverse. Gray indicates missing values.

hyper <- est.rf(hyper)
plotRF(hyper)
plotRF(hyper, chr=c(1,4))

There are some very strange patterns in the recombination fractions, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recombination fraction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typedonly on a selected number of individuals (largely those
showing recombination events across the interval).

plotRF(hyper, chr=6)
plotMissing(hyper, chr=6)

5

7. Re-estimate the genetic map (keeping the order of markersfixed), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01)
plotMap(hyper, newmap)

We see some map expansion, especially on chr 6, 13 and 18. It isquestionable whether we should replace the map or
not. Keep in mind that the previous map locations are based ona limited number of meioses. If one wished to replace
the genetic map with the estimated one, it could be done as follows:

hyper <- replace.map(hyper, newmap)

This replaces the map in thehyper data withnewmap.

8. We now turn to the identification of genotyping errors. In the following, we calculate the error LOD scores of Lincoln
and Lander (1992). A LOD score is calculated for each individual at each marker; large scores indicate likely genotyping
errors.

hyper <- calc.errorlod(hyper, error.prob=0.01)

This calculates the genotype error LOD scores and inserts them into thehyper object.

The functiontop.errorlod gives a list of genotypes that may be in error. Error LOD scores < 4 can probably be
ignored.

top.errorlod(hyper)

Note that the results will be different, depending on whether you usedreplace.map above. If you did, you will get
an indication of potential errors on chr 16 (and a few on chr 13). If you didn’t, you will get a very long list of potential
errors on chr 1, 11, 15, 16 and 17.

9. The functionplotGeno may be used to inspect the observed genotypes for a chromosome, with likely genotyping errors
flagged. Of course, it’s difficult to look at too many individuals at once. Note that white = AA and black = AB (for a
backcross).

plotGeno(hyper, chr=16, ind=c(24:34, 71:81))

We don’t have any utilities for fixing any apparent errors; itwould be best to go back to the raw data. (Of course, you
should edit a copy of the file; never discard the primary data.)

10. The functionplotInfo plots a measure of the proportion of missing genotype information in the genotype data. The
missing information is calculated in two ways: as entropy, or via the variance of the conditional genotypes, given the
observed marker data. (See the help file, using?plotInfo .)

plotInfo(hyper)
plotInfo(hyper, chr=c(1,4,15))
plotInfo(hyper, chr=c(1,4,15), method="entropy")
plotInfo(hyper, chr=c(1,4,15), method="variance")

11. We now, finally, get to QTL mapping.

The core of R/qtl is a set of functions which make use of the hidden Markov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint genotype distribution and to calculate the most likely sequenceof
underlying genotypes (all conditional on the observed marker data). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of course,for convenience we assume no crossover interference.

The functioncalc.genoprob calculates QTL genotype probabilities, conditional on theavailable marker data. These
are needed for most of the QTL mapping functions. The argument step indicates the step size (in cM) at which the
probabilities are calculated, and determines the step sizeat which later LOD scores are calculated.

hyper <- calc.genoprob(hyper, step=1, error.prob=0.01)

We may now use the functionscanone to perform a single-QTL genome scan with a normal model. We may use
maximum likelihood via the EM algorithm (Lander and Botstein 1989) or use Haley-Knott regression (Haley and Knott
1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and Churchill (2001). This requires that we first usesim.geno
to simulate from the joint genotype distribution, given theobserved marker data. Again, the argumentstep indicates

6

the step size at which the imputations are performed and determines the step size at which LOD scores will be calculated.
The n.draws indicates the number of imputations to perform. Larger values give more precise results but require
considerably more computer memory and computation time.

hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob= 0.01)
out.imp <- scanone(hyper, method="imp")

12. The output of scanone has class"scanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified threshold.

summary(out.em)
summary(out.em, threshold=3)
summary(out.hk, threshold=3)
summary(out.imp, threshold=3)

13. The functionmax.scanone returns just the highest peak from output ofscanone .

max(out.em)
max(out.hk)
max(out.imp)

14. We may also plot the results.plot.scanone can plot up to three genome scans at once, provided that they conform
appropriately. Alternatively, one may use the argumentadd .

plot(out.em, chr=c(1,4,15))
plot(out.em, out.hk, out.imp, chr=c(1,4,15))
plot(out.em, chr=c(1,4,15))
plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)
plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

15. The functionscanone may also be used to perform a permutation test to get a genome-wide LOD significance threshold.
For Haley-Knott regression, this can be quite fast.

operm.hk <- scanone(hyper, method="hk", n.perm=1000)

The permutation output has class"scanoneperm" . The functionsummary.scanoneperm can be used to get
significance thresholds.

summary(operm.hk, alpha=0.05)

In addition, if the permutations results are included in a call to summary.scanone , you can estimated genome-scan-
adjusted p-values for inferred QTL, and can get a report of all chromosomes meeting a certain significance level, with
the corresponding LOD threshold calculated automatically.

summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TR UE)

16. We should mention at this point that the functionsave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

17. The functionscantwo performs a two-dimensional genome scan with a two-QTL model. For every pair of positions, it
calculates a LOD score for the full model (two QTL plus interaction) and a LOD score for the additive model (two QTL
but no interaction). This be quite time consuming, and so youmay wish to do the calculations on a coarser grid.

hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
out2.hk <- scantwo(hyper, method="hk")

One can also usemethod="em" or method="imp" , but they are even more time consuming.

18. The output ofscantwo has class"scantwo" ; there are functions for obtaining summaries and plots, of course.

The summary function considers each pair of chromosomes, and calculates the maximum LOD score for the full model
(Mf) and the maximum LOD score for the additive model (Ma). These two models are allowed to be maximized at
different positions. We futher calculate a LOD score for a test of epistasis,Mi = Mf −Ma, and two LOD scores that
concern evidence for a second QTL:Mfv1 is the LOD score comparing the full model to the best single-QTL model and
Mav1 is the LOD score comparing the additive model to the best single-QTL model.

In the summary, we must provide five thresholds, forMf , Mfv1, Mi, Ma, andMav1, respectively. Call theseTf , Tfv1,
Ti, Ta, andTav1. We then report those pairs of chromosomes for which at leastone of the following holds:

7

• Mf ≥ Tf and (Mfv1 ≥ Tfv1 orMi ≥ Ti)

• Ma ≥ Ta andMav1 ≥ Tav1

The thresholds can be obtained by a permutation test (see below), but this is extremely time-consuming. For a mouse
backcross, we suggest the thresholds (6.0, 4.7, 4.4, 4.7, 2.6) for the full, conditional-interactive, interaction, additive, and
conditional-additive LOD scores, respectively. For a mouse intercross, we suggest the thresholds (9.1, 7.1, 6.3, 6.3,3.3)
for the full, conditional-interactive, interaction, additive, and conditional-additive LOD scores, respectively.These were
obtained by 10,000 simulations of crosses with 250 individuals, markers at a 10 cM spacing, and analysis by Haley-Knott
regression.

summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))

The appropriate decision rule is not yet completely clear. Iam inclined to ignoreMi and to choose genome-wide
thresholds for the other four based on a permutation, using acommon significance level for all four.Mi would be
ignored if we gave it a very large threshold, as follows.

summary(out2.hk, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

19. Plots ofscantwo results are created viaplot.scantwo .

plot(out2.hk)
plot(out2.hk, chr=c(1,4,6,15))

By default, the upper-left triangle contains epistasis LODscores and the lower-right triangle contains the LOD scoresfor
the full model. The color scale on the right indicates separate scales for the epistasis and joint LOD scores (on the left
and right, respectively).

20. The functionmax.scantwo returns the two-locus positions with the maximum LOD score for the full and additive
models.

max(out2.hk)

21. One may also usescantwo to perform permutation tests in order to obtain genome-wideLOD significance thresholds.
These can be extremely time consuming, though with the Haley-Knott regression and multiple imputation methods,
there is a trick that may be used in some cases to dramaticallyspeed things up. So we’ll try 100 permutations by the
Haley-Knott regression method and hope that your computer is sufficiently fast.

operm2.hk <- scantwo(hyper, method="hk", n.perm=100)

We can again usesummary to get LOD thresholds.

summary(operm2.hk)

And again these may be used in the summary of thescantwo output to calculate thresholds and p-values. If you want
to ignore the LOD score for the interaction in the rule about what chromosome pairs to report, giveα = 0, corresponding
to a thresholdT = ∞.

summary(out2.hk, perms=operm2.hk, pvalues=TRUE,
alphas=c(0.05, 0.05, 0, 0.05, 0.05))

You can’t really trust these results. Haley-Knott regression performs poorly in the case of selective genotyping (as with
thehyper data). Standard interval mapping or imputation would be better, but Haley-Knott regression has the advantage
of speed, which is the reason we use it here.

22. Finally, we consider the fit of multiple-QTL models. Currently, only multiple imputation and Haley-Knott regression has
been implemented. We use multiple imputation here, as Haley-Knott regression performs poorly in the case of selective
genotyping, which was used for thehyper data. We first create a QTL object using the functionmakeqtl , with five
QTL at specified, fixed positions.

chr <- c(1, 1, 4, 6, 15)
pos <- c(50, 76, 30, 70, 20)
qtl <- makeqtl(hyper, chr, pos)

Finally, we use the functionfitqtl to fit a model with five QTL, and allowing the QTL on chr 6 and 15 tointeract.

my.formula <- y ˜ Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5
out.fitqtl <- fitqtl(hyper, qtl=qtl, formula=my.formula)
summary(out.fitqtl)

See Example 5 (page 14) for a thorough discussion of the multiple QTL mapping methods in R/qtl.

8

23. You may wish to clean up your workspace before we move on tothe next example.

ls()
rm(list=ls())

Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapsand checking marker orders. In this example, we describe theuse of
these utilities.

1. Get access to some sample data. This is simulated data withsome errors in marker order.

data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs of markers, and plot them.

badorder <- est.rf(badorder)
plotRF(badorder)

It appears that markers on chr 2 and 3 have been switched.

Also note that, if we look more closely at the recombination fractions for chr 1, there seem to be some errors in marker
order.

plotRF(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plotMap(badorder, newmap)

This really shows the problems on chr 2 and 3.

4. Fix the problems on chr 2 and 3. First, we look more closely at the recombination fractions for these chromosoems

plotRF(badorder, chr=2:3)

We need to move the sixth marker on chr 2 to chr 3, and the fifth marker on chr 3 to chr 2. We need to figure out which
markers these are.

pull.map(badorder, chr=2)
pull.map(badorder, chr=3)

Now we can use the functionmovemarker to move the markers. It seems like they should be exactly switched.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

Now look at the recombination fractions again.

plotRF(badorder, chr=2:3)

5. We can check the marker order on chr 1. The functionripple will consider all permutations of a sliding window of
adjacent markers. A quick-and-dirty approach is to count the number of obligate crossovers for each possible order,
to find the order with the minimum number of crossovers. A morerefined, but also more computationally intensive,
approach is to re-estimate the genetic map for each order, calculating LOD scores (log10 likelihood ratios) relative to
the initial order. (This may be done with allowance for the presence of genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chr 1, permuting groups of six contiguous markers.

rip1 <- ripple(badorder, chr=1, window=6)
summary(rip1)

In the summary output, markers 9–11 clearly need to be flipped. There also seems to be a problem with the order of
markers 4–6.

9

6. The following performs the likelihood analysis, permuting groups of three adjacent markers, assuming a genotyping error
rate of 1%. It’s considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternate order has a higher likelihood than the original.

7. We can switch the order of markers 9–11 with the functionswitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second row of rip1 corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
rip1r <- ripple(badorder.rev, chr=1, window=6)
summary(rip1r)

It looks like the marker pairs (5,6) and (1,2) should each be inverted. We useswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, rip1r[2,])
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It’s probably best to start out using the quick-and-dirty method, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refine that order using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for this chromosome.

badorder.rev <- est.rf(badorder.rev)
plotRF(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the functionscanone , we consider some data on susceptibility toListeria monocyto-
genes in mice (Boyartchuk et al., Nature Genetics 27:259-260, 2001). These data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)
summary(listeria)
plot(listeria)
plotMissing(listeria)

Note that in the missing data plot, gray pixels are partiallymissing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hours) following infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recovered from the infection.

2. We’ll use the log survival time, rather than survival time, so we first need to create a new phenotype, which will end up
as the third phenotype (aftersex).

listeria$pheno$logSurv <- log(listeria$pheno[,1])
plot(listeria)

3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plotRF(listeria)
plotRF(listeria, chr=c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria, error.prob=0.01)
plotMap(listeria, newmap)
listeria <- replace.map(listeria, newmap)

10

5. Investigate genotyping errors; nothing gets flagged witha cutoff of 4, but one genotype is indicated with error LOD∼3.8.

listeria <- calc.errorlod(listeria, error.prob=0.01)
top.errorlod(listeria)
top.errorlod(listeria, cutoff=3.5)
plotGeno(listeria, chr=13, ind=61:70, cutoff=3.5)

Note that in the plot given byplotGeno , for an intercross, white = AA, gray = AB, black = BB, green = AAor AB,
and orange = AB or BB.

6. Now on to the QTL mapping. Recall that the phenotype distribution shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived longer than 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part model considered by Boyartchuk et al. (2001). In this model, a
mouse with genotypeg has probabilitypg of surviving the infection. If it does die, its log survival time is assumed to
be distributed normal(µg,σ2). Analysis proceeds by maximum likelihood via an EM algorithm. Three LOD scores are
calculated. LOD(p, µ) is for the test of the null hypothesispg ≡ p andµg ≡ µ. LOD(p) is for the test of the hypothesis
pg ≡ p but theµ are allowed to vary. LOD(µ) is for the test of the hypothesisµg ≡ µ but thep are allowed to vary.

The functionscanone will fit the above model when the argumentmodel="2part" . One must also specify the
argumentupper , which indicates whether the spike in the phenotype is the maximum phenotype (as it is with this phe-
notype; takeupper=TRUE) or the minimum phenotype (takeupper=FALSE). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=3, model="2part", upper=TRUE)

Note the use of the argumentpheno.col to indicate the phenotype column to use for the analysis. We can also refer to
the phenotype column by name:pheno.col="logSurv" .

Because the two-part model has three extra parameters, the appropriate LOD threshold is higher—around 4.5 rather than
3.5. The three different LOD curves are in columns 3–5 of the output.

summary(out.2p)
summary(out.2p, threshold=4.5)

Alternatively, we may useformat="allpeaks" , in which case it displays the maximum LOD score or each column,
with the position at which each was maximized. You may provide either one threshold, which would be applied to all
LOD score columns, or a separate threshold for each column.

summary(out.2p, format="allpeaks", threshold=3)
summary(out.2p, format="allpeaks", threshold=c(4.5,3, 3))

7. By default,plot.scanone will plot the first LOD score column. Alternatively, we may indicate another column to
plot with thelodcolumn argument. Or we can plot up to three LOD scores at once by giving a vector.

plot(out.2p)
plot(out.2p, lodcolumn=2)
plot(out.2p, lodcolumn=1:3, chr=c(1,5,13,15))

Note that the locus on chr 1 shows effect mostly on the mean time-to-death, conditional on death; the locus on chr 5
shows effect mostly on the probability of survival; and the loci on chr 13 and 15 shows some effect on each.

8. Permutation tests may be performed as before. The output will have three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 3,
upper=TRUE, n.perm=25)

summary(operm.2p, alpha=0.05)

We may again use the permutation results insummary.scanone to have thresholds calculated automatically and to
obtain genome-scan-adjusted p-values, but of course we would want to have performed more than 25 permutations.

summary(out.2p, format="allpeaks", perms=operm.2p,
alpha=0.05, pvalues=TRUE)

11

9. Alternatively, one may perform separate analyses of the log survival time, conditional on death, and the binary phenotype
survival/death. First we set up these phenotypes.

y <- listeria$pheno$logSurv
my <- max(y, na.rm=TRUE)
z <- as.numeric(y==my)
y[y==my] <- NA
listeria$pheno$logSurv2 <- y
listeria$pheno$binary <- z
plot(listeria)

We use standard interval mapping for the log survival time conditional on death; the results are slightly different from
LOD(µ).

out.mu <- scanone(listeria, pheno.col=4)
plot(out.mu, out.2p, lodcolumn=c(1,3), chr=c(1,5,13,15), col=c("blue","red"))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are onlyslight
different from LOD(p).

out.p <- scanone(listeria, pheno.col=5, model="binary")
plot(out.p, out.2p, lodcolumn=c(1,2), chr=c(1,5,13,15) , col=c("blue","red"))

The argumentpheno.col in scanone can actually take a vector of numeric phenotype values, and not just an indicator
to a phenotype column, and so we could have performed the binary trait analysis without first pasting the binary phenotype
into thelisteria object, as follows.

out.p.alt <- scanone(listeria, pheno.col=as.numeric(li steria$pheno$T264==264),
model="binary")

10. A further approach is to use a non-parametric form of interval mapping. R/qtl uses an extension of the Kruskal-Wallis
test statistic. Usescanone with model="np" . In this case, the argumentmethod is ignored; the analysis method
is much like Haley-Knott regression. If the argumentties.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE , tied phenotypes are given the average rank and a correctionis applied to the LOD score.

out.np1 <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)

plot(out.np1, out.np2, col=c("blue","red"))
plot(out.2p, out.np1, out.np2, chr=c(1,5,13,15))

Note that the significance threshold for the non-parametricgenome scan will be quite a bit smaller than that for the
two-part model. The two approaches for dealing with ties give basically the same results. Randomizing ties for the non-
parametric approach can give quite variable results in the case of a great number of ties, and so we would recommend the
use ofties.random=FALSE in this case.

Example 4: Covariates in QTL mapping

As a further example, we illustrate the use of covariates in QTL mapping. We consider some simulated backcross data.

1. Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

2. Perform genome scans for the two phenotypes without covariates. Here we consider two phenotypes, scanned individu-
ally.

fake.bc <- calc.genoprob(fake.bc, step=2.5)
out.nocovar <- scanone(fake.bc, pheno.col=1:2)

3. Perform genome scans with sex as an additive covariate. Note that the covariates must be numeric. Factors may have to
be converted.

sex <- fake.bc$pheno$sex
out.acovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex)

12

Here, the average phenotype is allowed to be different in thetwo sexes, but the effect of the putative QTL is assumed to
be the same in the two sexes.

4. Note that the use of sex as an additive covariate resulted in an increase in the LOD scores for phenotype 1, but resulted
in a decreased LOD score at the chr 5 locus for phenotype 2.

summary(out.nocovar, threshold=3, format="allpeaks")
summary(out.acovar, threshold=3, format="allpeaks")

plot(out.nocovar, out.acovar, chr=c(2, 5))
plot(out.nocovar, out.acovar, chr=c(2, 5), lodcolumn=2)

5. Let us now perform genome scans with sex as an interactive covariate, so that the QTL is allowed to be different in the
two sexes.

out.icovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex, intcovar=sex)

6. The LOD score in the output is for the comparison of the fullmodel with terms for sex, QTL and QTL×sex interaction
to the reduced model with just the sex term. Thus, the degreesof freedom associated with the LOD score is 2 rather than
1, and so larger LOD scores will generally be obtained.

summary(out.icovar, threshold=3, format="allpeaks")

plot(out.acovar, out.icovar, chr=c(2,5), col=c("blue", "red"))
plot(out.acovar, out.icovar, chr=c(2,5), lodcolumn=2,

col=c("blue", "red"))

7. The difference between the LOD score with sex as an interactive covariate and the LOD score with sex as an additive
covariate concerns the test of the QTL×sex interaction: does the QTL have the same effect in both sexes? The differences,
and a plot of the differences, may be obtained as follows.

out.sexint <- out.icovar - out.acovar
plot(out.sexint, lodcolumn=1:2, chr=c(2,5), col=c("gre en", "purple"))

The green and purple curves are for the first and second phenotypes, respectively.

8. To test for the QTL×sex interaction, we may perform a permutation test. This is not perfect, as the permutation test
eliminates the effect of the QTL, and so we must assume that the distribution of the LOD score for the QTL×sex
interaction is the same in the presence of a QTL as under the global null hypothesis of no QTL effect.

The permutation test requires some care. We must perform separate permutations with sex as an additive covariate and
with sex as an interactive covariate, but we must ensure, by setting the “seed” for the random number generator, that they
use matched permutations of the data.

For the sake of speed, we will use Haley-Knott regression, even though the results above were obtained by standard
interval mapping. Also, we will perform just 100 permutations, though 1000 would be preferred.

seed <- ceiling(runif(1, 0, 10ˆ8))
set.seed(seed)
operm.acovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,

method="hk", n.perm=100)
set.seed(seed)
operm.icovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,

intcovar=sex, method="hk", n.perm=100)

Again, the differences concern the QTL×sex interaction.

operm.sexint <- operm.icovar - operm.acovar

We can usesummary to get the genome-wide LOD thresholds.

summary(operm.sexint, alpha=c(0.05, 0.20))

We can also use these results to look at evidence for QTL×sex interaction in our initial scans.

summary(out.sexint, perms=operm.sexint, alpha=0.1,
format="allpeaks", pvalues=TRUE)

13

Example 5: Multiple QTL mapping

We return to thehyper data to illustrate some of the more advanced methods for exploring multiple QTL models. Note
that the multiple QTL mapping features are currently implemented only for multiple imputation and Haley-Knott regression.
We use multiple imputation here, as Haley-Knott regressionperforms poorly in the case of selective genotyping, which was
used for thehyper data.

1. First, let us delete everything in our workspace and then re-load thehyper data.

rm(list=ls())
data(hyper)

2. We will be using the multiple imputation method throughout this example, and so we first need to perform the imputations.
Recall that more imputations give more precise results, buttake more time and memory. To speed things along, we will
use only 16 imputations, even though much more would be needed for a definitive analysis. The small number of
imputations will make the following results somewhat unpredictable.

hyper <- sim.geno(hyper, step=2.5, n.draws=16, err=0.01)

3. We first perform a single-QTL genome scan and inspect the results.

out1 <- scanone(hyper, method="imp")
plot(out1)

As you may recall from the results in Example 1, we have clear evidence for a QTL on chr 4, and strong evidence for a
QTL on chr 1. The LOD curve on chr 1 has an interesting double peak, suggestive of possibly two QTL.

There is a hint of further loci on chr 6 and 15 and elsewhere.

4. In the presence of a large-effect QTL, as seen on chr 4, one may wish to repeat the scan, controlling for that locus. This
can make the loci with more modest effect more apparent.

A simple (but rough) approach is to pull out the genotypes fora marker near the peak locus, and use that marker as an
additive covariate in a single-QTL scan. The peak marker forthese data was D4Mit164:

max(out1)

If the peak LOD score is not at a marker, we may usefind.marker to identify the marker closest to the LOD peak.

find.marker(hyper, 4, 29.5)

5. The functionpull.geno may be used to pull out the genotype data for that marker, but we’ll see that most individuals
were not typed at D4Mit164.

g <- pull.geno(hyper)[,"D4Mit164"]
mean(is.na(g))

We may fill in the genotype data using a single imputation, andthen use those imputed genotypes as if they were observed.
This is not ideal; we’ll do this analysis properly below.

g <- pull.geno(fill.geno(hyper))[,"D4Mit164"]

6. Now we perform the genome scan, controlling for the chr 4 locus. (Note that in an intercross, we would have to re-code
the genotype data to be a two-column numeric matrix.)

out1.c4 <- scanone(hyper, method="imp", addcovar=g)

We can plot the results together with the original genome scan.

plot(out1, out1.c4, col=c("blue", "red"))

The LOD curve on chr 1 went up quite a bit. (And, of course, the LOD curve on chr 4 went down to near 0.) To see the
effect of controlling for the chr 4 locus more clearly, we canplot the differences between the LOD scores.

plot(out1.c4 - out1, ylim=c(-3,3))
abline(h=0, lty=2, col="gray")

7. We may also look for loci that interact with the chr 4 locus,by including marker D4Mit164 as an interactive covariate.

out1.c4i <- scanone(hyper, method="imp", addcovar=g, int covar=g)

The difference between these LOD scores and those obtained with D4Mit164 as a strictly additive covariate indicates
evidence for an interaction with the chr 4 locus.

14

plot(out1.c4i - out1.c4)

There is nothing particularly interesting here.

8. Now let us perform a 2d scan. This will take a few minutes, aswe’re doing the scan at a 2.5 cM step size.

out2 <- scantwo(hyper, method="imp")

9. Let us look at some summaries for thescantwo results. Recall that we need to provide five thresholds (see Example 1,
item 18 on page 7). We’ll ignore the threshold on the epistasis LOD score,Ti, and use the thresholds suggested above.

summary(out2, thr=c(6.0, 4.7, Inf, 4.7, 2.6))

Your results may be different from mine, since we are using sofew imputations, but I see evidence for loci on chr 1 and
4 (which don’t appear to interact) and loci on chr 6 and 15 (which do show evidence of epistasis).

This didn’t pick up evidence for two QTL on chr 1; we can look directly at the chr 1 results as follows.

summary(subset(out2, chr=1))

The LOD score for a second, additive QTL on chr 2 (LODav1) is ∼1.6; not strong, but not uninteresting.

Evidence for an interaction between loci on chr 7 and 15 had been previously reported. Those results may be inspected
as follows.

summary(subset(out2, chr=c(7,15)))

Again, this is interesting but not strong.

10. Let us look at some plots of thescantwo results. First we make the standard plot with selected chromosomes; the upper
triangle contains LODi and the lower triangle contains LODf .

plot(out2, chr=c(1,4,6,7,15))

The argumentslower andupper may be used to change what is plotted in the upper and lower triangles. For example,
with lower="cond-int" , LODfv1 (evidence for a second QTL, allowing for epistasis) is displayed in the lower
triangle, while withlower="cond-add" , LODav1 (evidence for a second QTL, assuming no epistasis) is displayed.

plot(out2, chr=1, lower="cond-add")
plot(out2, chr=c(6,15), lower="cond-int")
plot(out2, chr=c(7,15), lower="cond-int")

Again, evidence for a second QTL on chr 1 is not strong. Evidence for interacting QTL on chr 6 and 15 is quite strong;
the 7×15 interaction is not.

11. We can also perform the 2d scan conditional on the chr 4 locus. We’ll do this just for chr 1, 6, 7, and 15, to save time.

out2.c4 <- scantwo(hyper, method="imp", addcovar=g, chr= c(1,6,7,15))

If we look at the same summaries as before, we see decreased evidence for a second QTL on chr 1 and for the 7×15
interaction, but increased evidence for the 6×15 interaction.

summary(out2.c4, thr=c(6.0, 4.7, Inf, 4.7, 2.6))
summary(subset(out2.c4, chr=1))
summary(subset(out2.c4, chr=c(7,15)))

The sort of plots we made before remain interesting.

plot(out2.c4)
plot(out2.c4, chr=1, lower="cond-int")
plot(out2.c4, chr=c(6,15), lower="cond-int")
plot(out2.c4, chr=c(7,15), lower="cond-int")

We can also look at the differences in the LOD scores, to see how much conditioning on D4Mit164 has affected the
results. We need to subset our original results, since we only scanned selected chromosomes in the conditional analysis.
The allow.neg argument is used to allow negative LOD scores in thescantwo plot, as they would generally be
replaced with 0.

out2sub <- subset(out2, chr=c(1,6,7,15))
plot(out2.c4 - out2sub, allow.neg=TRUE, lower="cond-int ")

15

12. Now let us turn to the fit of multiple-QTL models. The function fitqtl is used to fit a specific model.

One must first pull out the data on fixed QTL locations usingmakeqtl . We will consider the possibility of two QTL on
chr 1, but will ignore the putative QTL on chr 7.

qc <- c(1, 1, 4, 6, 15)
qp <- c(43.3, 78.3, 30.0, 62.5, 18.0)
qtl <- makeqtl(hyper, chr=qc, pos=qp)

We also create a “formula” which indicates which QTL are to beincluded in the fit and which interact; the colon (:)
indicates an interaction.

myformula <- y ˜ Q1+Q2+Q3+Q4+Q5 + Q4:Q5

We can now fit a model, including the 6×15 interaction, and get a summary of the results.

out.fq <- fitqtl(hyper, qtl=qtl, formula = myformula)
summary(out.fq)

The first part of the summary describes the overall fit; the LODscore of∼23 is the log10 likelihood ratio comparing the
full model to the null model.

The second part of the summary gives results dropping one term at a time from the model. In the presence of an
interaction, if a term included in the interaction is omitted, the interaction is also omitted, and so the rows for the loci on
chr 6 and 15 indicate 2 degrees of freedom.

13. One may also usefitqtl to get estimated effects of the QTL in the context of the multiple-QTL model. We can use
drop=FALSE , so that the “drop one at a time” part of the analysis is not performed, andget.ests=TRUE to get the
estimated effects.

out.fq <- fitqtl(hyper, qtl=qtl, formula = myformula, drop =FALSE, get.ests=TRUE)
summary(out.fq)

The estimated effects are the differences between the heterozygote and homozygote groups. The interaction effect is the
difference between the differences.

14. The functionrefineqtl can be used to refine the estimated positions of the QTL in the context of the multiple-QTL
model. A QTL object may be provided, or one may specify the chromosomes and positions, as inmakeqtl ; we’ll use
the former approach.

revqtl <- refineqtl(hyper, qtl=qtl, formula = myformula)

The output is a QTL object, likeqtl ; typing its name gives a brief summary.

revqtl

A couple of the QTL moved, but none by very much.

One may use theplot.qtl function to plot the locations of the QTL on the genetic map.

plot(revqtl)

We can re-runfitqtl to get a fit with the new positions; the overall LOD score should have increased slightly. (For
me, it increased from 23.0 to 23.7.)

out.fq2 <- fitqtl(hyper, qtl=revqtl, formula=myformula)
summary(out.fq2)

15. Thescanqtl function is used to perform general genome scans in the context of a multiple QTL model. It is quite
flexible, but not simple to use. For most purposes, one may focus on the functionsaddqtl andaddpair , which scan
for an additional QTL or pair of QTL, respectively, to add to amultiple-QTL model.

We will first useaddqtl to perform a more precise version of our genome scan conditional on the chr 4 locus. Previ-
ously, we had conditioned on imputed genotypes at a marker near the LOD peak on chr 4. Withaddqtl we can do this
properly: take proper account of the missing genotype information at the chr 4 locus, rather than taking genotypes from
a single imputation as if they had been observed.

Theaddqtl function is much likefitqtl , taking a QTL object and formula as arguments. If the formulais omitted,
all loci are assumed to be additive. The additional QTL to be scanned may be included in the formula; if there are 5 QTL
in the input QTL object, refer to the new QTL asQ6. This allows a scan with the new QTL interacting with one or more
of the current QTL. If the new QTL is not included in the formula, it is assumed to be strictly additive.

16

The following performs a scan on all chromosomes, controlling solely for the QTL on chromosome 4. (This is the third
QTL in the QTL objectrevqtl , and so we may use as the formula eithery˜Q3 or y˜Q3+Q6 . The former is allowed,
as an additional additive QTL is assumed.)

out1.c4r <- addqtl(hyper, qtl=revqtl, formula=y˜Q3)

The output is of the same form as produced by thescanone function, and so we may use the same plot and summary
functions as are used forscanone results. (Note that the LOD scores produced byaddqtl are relative to the model
specified in the formula, omitting any terms including the additional QTL being scanned, rather than relative to the null
model.).

We may now plot these results with those obtained earlier. The results are actually not too different.

plot(out1.c4, out1.c4r, col=c("blue", "red"))

It may be more informative to plot the differences

plot(out1.c4r - out1.c4, ylim=c(-1.7, 1.7))
abline(h=0, lty=2, col="gray")

16. The functionaddpair may be used to perform a 2d scan for an additional pair of QTL, conditioning on the locus on
chr 4. If the new QTL are not specified in the formula, a scan as in scantwo is performed (that is, for each possible pair
of positions for the new QTL, we fit a model in which the two new QTL interact and one in which they are additive).

out2.c4r <- addpair(hyper, qtl=revqtl, formula=y˜Q3, chr =c(1,6,7,15))

The results are of the same form as produced byscantwo , and

We can plot the difference between these results and our previous results.

plot(out2.c4r - out2.c4, lower="cond-int", allow.neg=TR UE)

Again, things have not changed dramatically.

17. The most interesting use ofaddqtl andaddpair is to scan for additional loci, starting with our five-QTL model (with
the loci on 6 and 15 interacting).

First, we scan for an additional additive QTL.

out.1more <- addqtl(hyper, qtl=revqtl, formula=myformul a)
plot(out.1more)

There is not much evidence for an additional QTL.

18. We may next scan for an additional QTL that interacts withone of the QTL in our model, such as the QTL on chr 15.
This may be done by indicating the interaction in the formula, usingQ6 to specify the new QTL, since there are five QTL
in therevqtl object.

out.iw4 <- addqtl(hyper, qtl=revqtl, formula=y˜Q1+Q2+Q3 +Q4+Q5+Q4:Q5+Q6+Q5:Q6)
plot(out.iw4)

The LOD scores are just slightly higher, but there are two degrees of freedom in the test. There’s nothing particularly
exciting here.

19. Now, let us scan for an additional pair. This will take quite a bit of time, so let’s focus on a few chromosomes: 2, 5, 7
and 15.

out.2more <- addpair(hyper, qtl=revqtl, formula=myformu la, chr=c(2,5,7,15))

Again, the results are of the form produced byscantwo , and so we may use the same plot and summary functions.

plot(out.2more, lower="cond-int")

Again, there’s nothing particularly exciting.

20. Another function of interest isaddint , for testing the addition of each possible pairwise interactions, one at a time, to
a multiple-QTL model.

out.ai <- addint(hyper, qtl=revqtl, formula=myformula)
out.ai

The results contain one row per interaction, and contain thesame sort of information as produced by in the drop-one
analysis offitqtl . As the base model (inmyformula) contains an interaction between the loci on chr 6 and 15, that
particular interaction is not tested.

17

21. We should mention the functions for manipulating QTL objects (produced bymakeqtl): addtoqtl , dropfromqtl ,
replaceqtl , andreorderqtl .

If the use ofaddqtl andaddpair had indicated evidence for additional QTL, one could add them to the QTL object
with addtoqtl . As input, one provides the cross, the QTL object, and the chromosomes and positions of the QTL to
be added.

qtl2 <- addtoqtl(hyper, revqtl, 7, 53.6)
qtl2

A QTL may be removed withdropfromqtl . One provides either the numeric index within the object, the QTL name,
or the chromosome and position of the QTL to be dropped.

qtl3 <- dropfromqtl(qtl2, index=2)
qtl3

We can usereplaceqtl to move a particular QTL to a new position. One must provide the index of the QTL to be
replaced.

qtl4 <- replaceqtl(hyper, qtl3, index=1, chr=1, pos=50)
qtl4

We usereorderqtl to change the order of the loci within a QTL object.

qtl5 <- reorderqtl(qtl4, c(1:3,5,4))
qtl5

22. Finally, we consider an automated model selection procedure with a stepwise search algorithm, using the function
stepwiseqtl . The function seeks to optimize a penalized LOD score criterion, which is the LOD score for a model
(relative to the null model with no QTL) with penalties on each QTL main effect and a separate penalty on interactions.

Actually, we include include two penalties on interactions, a light penalty and a heavy penalty. We focus on models with
possible pairwise interactions among QTL, and with a hierarchical structure in which the inclusion of an interaction term
requires the inclusion of both of the corresponding main effects terms. Such a model may be represented by a graph in
which vertices (dots) represent QTL and edges (line segments between the dots) represent interactions between QTL. In
the penalized LOD score considered bystepwiseqtl , each disconnected component of a model is allowed one light
interaction penalty; all other interactions are assigned the heavy penalty.

The three penalties may be calculed from permutation results with scantwo , using the functioncalc.penalties .
We will use default penalties derived by computer simulation: (2.69, 2.62, 1.19) for a mouse backcross, or (3.52, 4.28,
2.69) for a mouse intercross. (The penalties are in the order(main, heavy interaction, light interaction).)

First, let us applystepwiseqtl , considering only additive QTL models (withadditive.only=TRUE . The algo-
rithm performs forward selection up to a model with a given number of QTL (specified by the argumentmax.qtl ; we’ll
use 6), followed by backward elimination.

stepout.a <- stepwiseqtl(hyper, additive.only=TRUE, max .qtl=6)
stepout.a

I obtained a model with two QTL, with one QTL on each of chr 1 and4.

Now let’s re-run the analysis, allowing for the possibilityof interactions among the QTL.

stepout.i <- stepwiseqtl(hyper, max.qtl=6)
stepout.i

I obtained a model with four QTL, including one on each of chr 1, 4, 6 and 15, and including an interaction between the
loci on chr 6 and 15.

23. Note that all of the above could be performed using Haley-Knott regression rather than multiple imputation. Just three
changes need to be made.

First, one needs to runcalc.genoprob rather thansim.geno , to calculate the QTL genotype probabilities rather
than perform imputations.

Second, in a call tomakeqtl , use the argumentwhat="prob" , so that the genotype probabilities are placed in the
object rather than imputations.

Third, in calls tofitqtl , addqtl , addpair , etc., usemethod="hk" .

18

Example 6: Internal data structure

Finally, let us briefly describe the rather complicated datastructure that R/qtl uses for QTL mapping experiments. Thiswill be
rather dull, and will require a good deal of familiarity withthe R (or S) language. The choice of data structure required some
balance between ease of programming and simplicity for the user interface. The syntax for references to certain pieces of the
internal data can become extremely complicated.

1. Get access to some sample data.

data(fake.bc)

2. First, the object has a “class,” which indicates that it corresponds to data for an experimental cross, and gives the
cross type. By having classcross , the functionsplot andsummary know to send the data toplot.cross and
summary.cross .

class(fake.bc)

3. Everycross object has two components, one containing the genotype dataand genetic maps and the other containing
the phenotype data.

names(fake.bc)

4. The phenotype data is simply a matrix (more strictly a data.frame) with rows corresponding to individuals and columns
corresponding to phenotypes.

fake.bc$pheno[1:10,]

5. The genotype data is a list with components correspondingto chromosomes. Each chromosome has a name and a class.
The class for a chromosome is either"A" or "X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

6. Each component ofgeno contains two components,data (containing the marker genotype data) andmap (containing
the positions of the markers, in cM).

names(fake.bc$geno[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That’s it for the raw data.

7. When one runscalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross
object with the derived data attached to each component (thechromosomes) of thegeno component.

names(fake.bc$geno[[3]])
fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])
fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- calc.errorlod(fake.bc, err=0.01)
names(fake.bc$geno[[3]])

8. Finally, when one runsest.rf , a matrix containing the pairwise recombination fractionsand LOD scores is added to
the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)

19

