A brief tour of R/qtl

Karl W Broman

Department of Biostatistics and Medical Informatics
University of Wisconsin — Madison

http://www.rqtl.org
21 March 2012

Overview of R/qtl

R/qtl is an extensible, interactive environment for magminantitative trait loci (QTL) in experimental crossedslimple-
mented as an add-on package for the freely available andywided statistical language/software R (see www.r-ptajeg).
The development of this software as an add-on to R allows tekadvantage of the basic mathematical and statistinat fu
tions, and powerful graphics capabilities, that are predidith R. Further, the user will benefit by the seamless matemn of
the QTL mapping software into a general statistical analpsbgram. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling ratta computing.

A key component of computational methods for QTL mappingéshidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main Hijdrithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-knawswiy crosses.

The current version of R/qtl includes facilities for estiing genetic maps, identifying genotyping errors, and grening
single-QTL genome scans and two-QTL, two-dimensional genscans, by interval mapping (with the EM algorithm), Haley
Knott regression, and multiple imputation. All of this mag thone in the presence of covariates (such as sex, age onéraat
One may also fit higher-order QTL models by multiple imputatand Haley-Knott regression.

R/qtl is distributed as source code for Unix or compiled ctodéVindows or Mac OS X. R/qtl is released under the GNU
General Public License, version 3. To download the softywaye must agree to the terms in that license.

Overview of R

R is an open-source implementation of the S language. Asidedmn the R-project homepage (www.r-project.org):

R is a system for statistical computation and graphics. nsigts of a language plus a run-time environment with
graphics, a debugger, access to certain system functindghe ability to run programs stored in script files.

The core of R is an interpreted computer language which alloranching and looping as well as modular pro-
gramming using functions. Most of the user-visible fungtion R are written in R. It is possible for the user to
interface to procedures written in the C, C++, or FORTRANglaeges for efficiency. The R distribution con-
tains functionality for a large number of statistical prdaees. Among these are: linear and generalized linear
models, nonlinear regression models, time series anabtassical parametric and nonparametric tests, clugterin
and smoothing. There is also a large set of functions whickige a flexible graphical environment for creating
various kinds of data presentations. Additional modulesaamilable for a variety of specific purposes.

R is freely available for Windows, Unix and Mac OS X, and maydwsvnloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, bwill definitely be worth the effort. Numerous free docuneent
on getting started with R are available on CRAN. In additlpsaveral books are available. The most important book on R
is Venables and Ripley (200Rjodern Applied Satistics with S, 4th edition. Dalgaard (2002ptroductory Satistics with R
provides a more gentle introduction.

Citation for R/qtl
To cite R/qgtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/gtl: QTL mappimgexperimental crosses. Bioinformatics
19:889-890

http://www.rqtl.org
http://www.r-project.org
http://www.r-project.org

Selected R/qtl functions

Sample data badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an, fntercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes suikGiy
mapl0 A genetic map modeled after the mouse genome (10 chhgpac
I nput/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file
Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map
Summaries gtlversion Gives the version number of installed R/qtl ey
plot.cross Plot various features of a cross object
plotMissing Plot grid of missing genotypes
geno.image Plot grid with colored pixels representingedéht genotypes
plotPheno Histogram or bar plot of a phenotype
plotinfo Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment
summaryMap Print summary of a genetic map
nchr, nind, nmar, nphe, totmar, nmissing, ntyped
find.pheno Find the column number for a particular phenotype
find.marker Find the marker closest to a specified position
find.flanking Find the markers flanking a particular position

find.pseudomarker

find.markerpos

Find the name of the grid position clasestparticular position
Find the map positions of a marker

Data manipulation

clean.cross
drop.markers
drop.nullmarkers

Remove intermediate calculations from a cross
Remove a list of markers
Remove markers without data

fill.geno Fill in holes in genotype data by imputation or Vie
strip.partials Replace partially informative genotypéthwnissing values
pull.map Pull out the genetic map from a cross
pull.geno Pull out the genotype data as a matrix
pull.pheno Pull out a phenotype
replace.map Replace the genetic map of a cross
jittermap Jitter marker positions slightly so that no twanoide
subset.cross Select a subset of chromosomes and/or inalisitfom a cross
C.Cross Combine two crosses into one object
switch.order Switch the order of markers on a chromosome
movemarker Move a marker from one chromosome to another
HMM engine argmax.geno Reconstruct underlying genotypes by theb¥igdgorithm
calc.genoprob Calculate conditional genotype probadslit
sim.geno Simulate genotypes given observed marker data
Diagnostics geno.table Create table of genotype distributions
geno.crosstab Create cross-tabulation of genotypes ahtwkers
checkAlleles Identify markers with potentially switchelteées

calc.errorlod
top.errorlod
plotGeno
comparecrosses
comparegeno

Calculate Lincoln & Lander (1992) error LOEbses
List genotypes with highest error LOD values
Plot observed genotypes, flagging likely errors
Compare two cross objects, to see if thélyeasame
Calculate proportion of matching genotypesdoh pair of individuals

Selected R/qtl functions (continued)

Genetic mapping est.rf Estimate pairwise recombination fractions
plotRF Plot recombination fractions
est.map Estimate genetic map
plotMap Plot genetic map(s)
summaryMap Print summary of a genetic map
ripple Assess marker order by permuting groups of adjacenkens
summary.ripple Print summary of ripple output
compareorder Compare two orderings of markers on a chram®so
tryallpositions Test all possible positions for a marker

QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
lodint Calculate a LOD support interval
bayesint Calculate an approximate Bayes credible interval
scanoneboot Non-parametric bootstrap to obtain a confidieterval for QTL location

plot.scanone
add.threshold
plot.scantwo

summary.scanone
summary.scantwo

max.scanone

Plot output for a one-dimensional genome scan
Add a horizontal line at a LOD threshold torsogee scan plot
Plot output for a two-dimensional genome scan
Print summary of scanone output
Print summary of scantwo output
Maximum peak in scanone output

max.scantwo Maximum peak in scantwo output
effectplot Plot phenotype means of genotype groups defipedds 2 markers
effectscan Plot estimated QTL effects across the wholergeno
plotPXG Like effectplot, but as a dot plot of the phenotypes
Multiple QTL models makeqtl Make a qtl object for use by fitgtl
fitqtl Fit a multiple QTL model
summary.fitqtl Get summary of the result of fitgtl
scanqtl Perform a multi-dimensional genome scan
refineqtl Refine the QTL locations in a multiple QTL model

plotLodProfile
addqtl
addpair
addint
summary.qtl
plot.qtl
addtoqtl
dropfromqtl
replaceqtl
reorderqtl

cim
stepwiseqtl
calc.penalties
plotModel

Plot 1-dimensional LOD profiles for a mulgpQTL model

Scan for an additional QTL, in a multiple-QTL model

Scan for an additional pair of QTL, in a multiple-Qiodel

Add pairwise interactions, one at a time, in a muHQITL model
Print a summary of a QTL object

Plot the QTL locations on the genetic map

Add to a QTL object

Drop a QTL from a QTL object

Replace a QTL location in a QTL object with a d#f& position
Reorder the QTL in a QTL object

A (relatively crude) implementation of Composite In&rMapping
Stepwise selection for multiple QTL
Calculate penalties for use with stepwliseq

Plot a graphical representation of a multipletQiiodel

Preliminaries

Use of the R/qtl package requires considerable knowledteed® language/environment. We hope that the examplesieese
here will be understandable with little prior knowledge oféRpecially because we neglect to explain the syntax of Rergke
books, as well as some free documents, are available ta tesisser in learning R; see the R project website cited abiee
assume here that the user is running either Windows or Mac OS X

1. To start R, double-click its icon.

2. To exit, type:
a0

Click yes or no to save or discard your work.

3. R keeps all of your work in RAM. If R should crash, all will best, and you will have to start from the beginning. The
functionsave.image can be used to save your work to disk as you go along, so that|dsR crash, you won't have
to start from scratch. You would type:

save.image()

4. Load the R/qtl package:
library(qtl)

5. View the objects in your workspace:
Is()

6. The best way to get help on the functions and data sets imdRiaR/qtl) is via the html version of the help files. One
way to get access to this is to type
help.start()
This should open a browser with the main help menu. If you thiek on Packages-~ qtl, you can see all of the available
functions and datasets in R/gtl. For example, look at thp fikel for the functiorread.cross
An alternative method to view this help file is to type one @& tallowing:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to @atiallow use of hotlinks between different functions.

7. All of the code in this tutorial is available as a file fromiafnyou may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.rqgtl.org/rqtltour.R")

Dataimport

A difficult first step in the use of most data analysis softwar¢he import of data. With R/qtl, one may import data in
several different formats by use of the functimad.cross . (Example data files are available at www.rgtl.org/samgted
The internal data structure used by R/qtl is rather com@itaand is described in the help file f@ad.cross . (Also see
Example 6 on pade19.) We won't discuss data import any fuhtee, except to say that the comma-delimited forrteay(")

is recommended. If you have trouble importing data, sendnaailéo Karl Broman kKbroman@biostat.wisc.edu),
attaching examples of your data files. (Such data will be kepfidential.)

Example 1. Hypertension

As a first example, we consider data from an experiment onrksm&ion in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your wodesgand view its help file. These data are included with thel R/q
package, and so you can get access to the data with the fonietia() . (Remember that you first need to load the
R/qtl package vidibrary(qtl))
data(hyper)

Is()
?hyper

http://www.rqtl.org/sampledata

2. We will postpone discussion of the internal data streectiged by R/qtl until later. For now we'll just say that theadat
hyper has “class™cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply useimmary and the data is sent to the appropriate function accordiritg to
class.

summary(hyper)

Several other utility functions are available for gettingrsnary information on the data. Hopefully these are self-
explanatory.

nind(hyper)

nphe(hyper)

nchr(hyper)

totmar(hyper)

nmar(hyper)

3. Plot a summary of these data.

plot(hyper)
In the upper left, black pixels indicate missing genotypead&lote that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lowiraehistogram of the phenotype is shown.

The Windows version of R has a slick method for recording asago that one may page up and down through a series
of plots. To initiate this, click (on the menu bat)story — Recording

We may plot the individual components of the above multitfilgure as follows.
plotMissing(hyper)

plotMap(hyper)

plotPheno(hyper, pheno.col=1)

We can plot the genetic map with marker names, but they caatberrdifficult to read. The following code plots the
map with marker names for chr 1, 4, 6, 7 and 15.

plotMap(hyper, chr=c(1, 4, 6, 7, 15), show.marker.names=T RUE)

4. Note the odd pattern of missing data; we may make this ngsata plot with the individuals ordered according to the
value of their phenotype.

plotMissing(hyper, reorder=TRUE)

We see that, for most markers, only individuals with extrgzshenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant irchligis.

5. The functiordrop.nullmarkers may be used to remove markers that have no genotype datagstich marker on
chr 14). A call tototmar will show that there are now 173 markers (rather than 17heatwere initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs ofkers, and plot them. This also calculates LOD scores for the
test of H): » = 1/2. The plot of the recombination fractions can be either wéttombination fractions in the upper part
and LOD scores below, or with just recombination fractiongust LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is teearse. Gray indicates missing values.

hyper <- est.rf(hyper)

plotRF(hyper)

plotRF(hyper, chr=c(1,4))

There are some very strange patterns in the recombinagatidns, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recoridinfraction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was tygméyglon a selected number of individuals (largely those
showing recombination events across the interval).

plotRF(hyper, chr=6)

plotMissing(hyper, chr=6)

7.

10.

11.

Re-estimate the genetic map (keeping the order of mafixexd), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01)
plotMap(hyper, newmap)

We see some map expansion, especially on chr 6, 13 and 18queiionable whether we should replace the map or
not. Keep in mind that the previous map locations are baseallonited number of meioses. If one wished to replace
the genetic map with the estimated one, it could be done ksl

hyper <- replace.map(hyper, newmap)
This replaces the map in tigper data withnewmap

. We now turn to the identification of genotyping errors. e following, we calculate the error LOD scores of Lincoln

and Lander (1992). A LOD score is calculated for each indigldt each marker; large scores indicate likely genotyping
errors.

hyper <- calc.errorlod(hyper, error.prob=0.01)
This calculates the genotype error LOD scores and inserts thto thehyper object.

The functiontop.errorlod gives a list of genotypes that may be in error. Error LOD ssered can probably be
ignored.

top.errorlod(hyper)

Note that the results will be different, depending on whetlel usedreplace.map above. If you did, you will get
an indication of potential errors on chr 16 (and a few on chr 1f3you didn’t, you will get a very long list of potential
errorson chr 1,11, 15, 16 and 17.

. The functiomplotGeno may be used to inspect the observed genotypes for a chronepsath likely genotyping errors

flagged. Of course, it's difficult to look at too many indiviela at once. Note that white = AA and black = AB (for a
backcross).

plotGeno(hyper, chr=16, ind=c(24:34, 71:81))

We don't have any utilities for fixing any apparent errorsyaduld be best to go back to the raw data. (Of course, you
should edit a copy of the file; never discard the primary dlata.

The functiorplotinfo plots a measure of the proportion of missing genotype in&tion in the genotype data. The
missing information is calculated in two ways: as entropyyia the variance of the conditional genotypes, given the
observed marker data. (See the help file, uSipigtinfo)

plotinfo(hyper)

plotinfo(hyper, chr=c(1,4,15))

plotinfo(hyper, chr=c(1,4,15), method="entropy")
plotinfo(hyper, chr=c(1,4,15), method="variance")

We now, finally, get to QTL mapping.

The core of R/qtl is a set of functions which make use of theldidMarkov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint ggme distribution and to calculate the most likely sequenfce
underlying genotypes (all conditional on the observed miadata). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of codics&onvenience we assume no crossover interference.

The functioncalc.genoprob calculates QTL genotype probabilities, conditional ondtiailable marker data. These
are needed for most of the QTL mapping functions. The argtistep indicates the step size (in cM) at which the
probabilities are calculated, and determines the stepasizdich later LOD scores are calculated.

hyper <- calc.genoprob(hyper, step=1, error.prob=0.01)

We may now use the functioscanone to perform a single-QTL genome scan with a normal model. Wg ose
maximum likelihood via the EM algorithm (Lander and Botst&P89) or use Haley-Knott regression (Haley and Knott
1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and&iiilig2001). This requires that we first usen.geno
to simulate from the joint genotype distribution, given tieserved marker data. Again, the argum&tep indicates

6

12.

13.

14.

15.

16.

17.

18.

the step size at which the imputations are performed andrdigtes the step size at which LOD scores will be calculated.
The n.draws indicates the number of imputations to perform. Larger #algive more precise results but require
considerably more computer memory and computation time.

hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob= 0.01)
out.imp <- scanone(hyper, method="imp")

The output of scanone has cl&ssanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified tHoesho

summary(out.em)

summary(out.em, threshold=3)
summary(out.hk, threshold=3)
summary(out.imp, threshold=3)

The functiormax.scanone returns just the highest peak from outpuseanone .

max(out.em)
max(out.hk)
max(out.imp)

We may also plot the resultplot.scanone can plot up to three genome scans at once, provided that trégren
appropriately. Alternatively, one may use the argunsaid.

plot(out.em, chr=c(1,4,15))

plot(out.em, out.hk, out.imp, chr=c(1,4,15))

plot(out.em, chr=c(1,4,15))

plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)

plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

The functiorscanone may also be used to perform a permutation test to get a gemada=-OD significance threshold.
For Haley-Knott regression, this can be quite fast.
operm.hk <- scanone(hyper, method="hk", n.perm=1000)

The permutation output has cla&canoneperm” . The functionsummary.scanoneperm can be used to get
significance thresholds.

summary(operm.hk, alpha=0.05)

In addition, if the permutations results are included in lhtoasummary.scanone , you can estimated genome-scan-
adjusted p-values for inferred QTL, and can get a reportlaftabmosomes meeting a certain significance level, with
the corresponding LOD threshold calculated automatically

summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TR UE)

We should mention at this point that the functeave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

The functiorscantwo performs a two-dimensional genome scan with a two-QTL mde@l every pair of positions, it

calculates a LOD score for the full model (two QTL plus intgian) and a LOD score for the additive model (two QTL
but no interaction). This be quite time consuming, and somay wish to do the calculations on a coarser grid.

hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
out2.hk <- scantwo(hyper, method="hk")

One can also usmethod="em" or method="imp" , but they are even more time consuming.

The output oscantwo has clas$scantwo" ; there are functions for obtaining summaries and plotspafse.

The summary function considers each pair of chromosomels¢a@nulates the maximum LOD score for the full model
(M) and the maximum LOD score for the additive mod&l,). These two models are allowed to be maximized at
different positions. We futher calculate a LOD score forst td epistasis); = My — M,, and two LOD scores that
concern evidence for a second QT is the LOD score comparing the full model to the best singld-@hodel and
M, is the LOD score comparing the additive model to the bestsiQy L model.

In the summary, we must provide five thresholds,fof, M¢,1, M;, M,, andM,,, respectively. Call these;, T,
T;, T,, andT,,,. We then report those pairs of chromosomes for which at te@sof the following holds:

7

19.

20.

21.

22.

o My >Typand My, > Typr Or M; > T))
o M, >T,andM,1 > Tyu1

The thresholds can be obtained by a permutation test (see/}pddut this is extremely time-consuming. For a mouse
backcross, we suggest the thresholds (6.0, 4.7, 4.4, $)/a2 the full, conditional-interactive, interaction, ditive, and
conditional-additive LOD scores, respectively. For a neoimgercross, we suggest the thresholds (9.1, 7.1, 6.33&38,

for the full, conditional-interactive, interaction, atlde, and conditional-additive LOD scores, respectivdlgese were
obtained by 10,000 simulations of crosses with 250 indiaisumarkers at a 10 cM spacing, and analysis by Haley-Knott
regression.

summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))
The appropriate decision rule is not yet completely cleaaml inclined to ignoreM; and to choose genome-wide

thresholds for the other four based on a permutation, usiognamon significance level for all fourM,; would be
ignored if we gave it a very large threshold, as follows.

summary(out2.hk, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

Plots ofscantwo results are created vjdot.scantwo

plot(out2.hk)

plot(out2.hk, chr=c(1,4,6,15))

By default, the upper-left triangle contains epistasis L&¥0res and the lower-right triangle contains the LOD scfmes

the full model. The color scale on the right indicates sejgasaales for the epistasis and joint LOD scores (on the left
and right, respectively).

The functionmax.scantwo returns the two-locus positions with the maximum LOD scarethe full and additive
models.

max(out2.hk)

One may also uskantwo to perform permutation tests in order to obtain genome-wi@d® significance thresholds.
These can be extremely time consuming, though with the Halett regression and multiple imputation methods,
there is a trick that may be used in some cases to dramatiadigd things up. So we'll try 100 permutations by the
Haley-Knott regression method and hope that your compsitaufficiently fast.

operm2.hk <- scantwo(hyper, method="hk", n.perm=100)
We can again ussummary to get LOD thresholds.
summary(operm2.hk)

And again these may be used in the summary osttatwo output to calculate thresholds and p-values. If you want
to ignore the LOD score for the interaction in the rule aboliéta\chromosome pairs to report, give= 0, corresponding
to a threshold” = oc.

summary(out2.hk, perms=operm2.hk, pvalues=TRUE,
alphas=c(0.05, 0.05, 0, 0.05, 0.05))
You can't really trust these results. Haley-Knott regresgierforms poorly in the case of selective genotyping (dis wi

thehyper data). Standard interval mapping or imputation would béebdbiut Haley-Knott regression has the advantage
of speed, which is the reason we use it here.

Finally, we consider the fit of multiple-QTL models. Gamtly, only multiple imputation and Haley-Knott regressimas
been implemented. We use multiple imputation here, as Hafett regression performs poorly in the case of selective
genotyping, which was used for tihgper data. We first create a QTL object using the functioakeqtl , with five
QTL at specified, fixed positions.

chr <- c(1, 1, 4, 6, 15)

pos <- c¢(50, 76, 30, 70, 20)

gtl <- makeqtl(hyper, chr, pos)

Finally, we use the functiofitqtl to fit a model with five QTL, and allowing the QTL on chr 6 and 15riteract.
my.formula <- y " Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5

out.fitqtl <- fitgtl(hyper, gtl=qtl, formula=my.formula)

summary(out.fitqtl)

See Example 5 (padiel14) for a thorough discussion of the pla TL mapping methods in R/qtl.

8

23. You may wish to clean up your workspace before we move timetoext example.

Is()
rm(list=Is())

Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapd checking marker orders. In this example, we describasbef
these utilities.

1. Get access to some sample data. This is simulated dataawit errors in marker order.
data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs afkers, and plot them.

badorder <- est.rf(badorder)
plotRF(badorder)

It appears that markers on chr 2 and 3 have been switched.

Also note that, if we look more closely at the recombinatimacfions for chr 1, there seem to be some errors in marker
order.

plotRF(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plotMap(badorder, newmap)

This really shows the problems on chr 2 and 3.

4. Fix the problems on chr 2 and 3. First, we look more closttii@recombination fractions for these chromosoems
plotRF(badorder, chr=2:3)

We need to move the sixth marker on chr 2 to chr 3, and the fifttkenan chr 3 to chr 2. We need to figure out which
markers these are.

pull. map(badorder, chr=2)
pull. map(badorder, chr=3)

Now we can use the functianovemarker to move the markers. It seems like they should be exactlycheit.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

Now look at the recombination fractions again.
plotRF(badorder, chr=2:3)

5. We can check the marker order on chr 1. The functipple will consider all permutations of a sliding window of
adjacent markers. A quick-and-dirty approach is to couatrthmber of obligate crossovers for each possible order,
to find the order with the minimum number of crossovers. A mefined, but also more computationally intensive,
approach is to re-estimate the genetic map for each ordeylaang LOD scores (log, likelihood ratios) relative to
the initial order. (This may be done with allowance for thegance of genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chr 1, permutingugsoof six contiguous markers.
ripl <- ripple(badorder, chr=1, window=6)
summary(ripl)

In the summary output, markers 9-11 clearly need to be flipdéttre also seems to be a problem with the order of
markers 4-6.

6. The following performs the likelihood analysis, permgtgroups of three adjacent markers, assuming a genotypimg e
rate of 1%. It's considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternadeionas a higher likelihood than the original.

7. We can switch the order of markers 9-11 with the funciasitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second ripd o corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
riplr <- ripple(badorder.rev, chr=1, window=6)
summary(riplr)

It looks like the marker pairs (5,6) and (1,2) should eachriverited. We usswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, rip1r[2,])
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It's probably best to start out using the quick-and-dirtytineel, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refieottder using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for thimmosome.

badorder.rev <- est.rf(badorder.rev)
plotRF(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the funcoanone , we consider some data on susceptibility_tsteria monocyto-
genesin mice (Boyartchuk et al., Nature Genetics 27:259-260,1200hese data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)
summary(listeria)
plot(listeria)
plotMissing(listeria)

Note that in the missing data plot, gray pixels are partialigsing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hooiving infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recal/&an the infection.
2. We'll use the log survival time, rather than survival tinse we first need to create a new phenotype, which will end up
as the third phenotype (aftsex).
listeria$pheno$logSurv <- log(listeria$phenol,1])
plot(listeria)
3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plotRF(listeria)
plotRF(listeria, chr=c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria, error.prob=0.01)
plotMap(listeria, newmap)
listeria <- replace.map(listeria, newmap)

10

5. Investigate genotyping errors; nothing gets flagged avithtoff of 4, but one genotype is indicated with error L&B.8.

listeria <- calc.errorlod(listeria, error.prob=0.01)
top.errorlod(listeria)

top.errorlod(listeria, cutoff=3.5)

plotGeno(listeria, chr=13, ind=61:70, cutoff=3.5)

Note that in the plot given bplotGeno , for an intercross, white = AA, gray = AB, black = BB, green = AAAB,
and orange = AB or BB.

6. Now on to the QTL mapping. Recall that the phenotype distion shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived londeart 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part modeldsmesi by Boyartchuk et al. (2001). In this model, a
mouse with genotype has probabilityp, of surviving the infection. If it does die, its log survivairte is assumed to
be distributed normal(,,o). Analysis proceeds by maximum likelihood via an EM aldurit Three LOD scores are
calculated. LODY,) is for the test of the null hypothesig = p andy, = p. LOD(p) is for the test of the hypothesis
pg = p but thep are allowed to vary. LODY) is for the test of the hypothesis, = p but thep are allowed to vary.

The functionscanone will fit the above model when the argumemibdel="2part" . One must also specify the
argumenupper , which indicates whether the spike in the phenotype is theémmam phenotype (as it is with this phe-
notype; takaipper=TRUE) or the minimum phenotype (takgoper=FALSE). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=3, model="2part", upper=TRUE)

Note the use of the argumeplieno.col to indicate the phenotype column to use for the analysis. &eatso refer to
the phenotype column by namgheno.col="logSurv"

Because the two-part model has three extra parametergphepaiate LOD threshold is higher—around 4.5 rather than
3.5. The three different LOD curves are in columns 3-5 of thtpuat.

summary(out.2p)
summary(out.2p, threshold=4.5)

Alternatively, we may uséormat="allpeaks" , iIn which case it displays the maximum LOD score or each colum
with the position at which each was maximized. You may prewither one threshold, which would be applied to all
LOD score columns, or a separate threshold for each column.

summary(out.2p, format="allpeaks", threshold=3)
summary(out.2p, format="allpeaks", threshold=c(4.5,3, 3))

7. By default,plot.scanone will plot the first LOD score column. Alternatively, we maydicate another column to
plot with thelodcolumn argument. Or we can plot up to three LOD scores at once bygaivector.

plot(out.2p)
plot(out.2p, lodcolumn=2)
plot(out.2p, lodcolumn=1:3, chr=c(1,5,13,15))

Note that the locus on chr 1 shows effect mostly on the meae-tovdeath, conditional on death; the locus on chr 5
shows effect mostly on the probability of survival; and tbeilon chr 13 and 15 shows some effect on each.

8. Permutation tests may be performed as before. The outiittave three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 3,
upper=TRUE, n.perm=25)
summary(operm.2p, alpha=0.05)
We may again use the permutation resultsimmary.scanone to have thresholds calculated automatically and to
obtain genome-scan-adjusted p-values, but of course wilwa@nt to have performed more than 25 permutations.

summary(out.2p, format="allpeaks”, perms=operm.2p,
alpha=0.05, pvalues=TRUE)

11

9. Alternatively, one may perform separate analyses ofdpasulrvival time, conditional on death, and the binary plygo®
survival/death. First we set up these phenotypes.

y <- listeria$pheno$logSurv
my <- max(y, ha.rm=TRUE)
Z <- as.numeric(y==my)
yly==my] <- NA
listeria$pheno$logSurv2 <- vy
listeria$pheno$binary <- z
plot(listeria)

We use standard interval mapping for the log survival timeditional on death; the results are slightly different from

LOD(p).

out.mu <- scanone(listeria, pheno.col=4)

plot(out.mu, out.2p, lodcolumn=c(1,3), chr=c(1,5,13,15), col=c("blue","red"))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are sligjnt

different from LODp).

out.p <- scanone(listeria, pheno.col=5, model="binary")
plot(out.p, out.2p, lodcolumn=c(1,2), chr=c(1,5,13,15) , col=c("blue","red"))
The argumenpheno.col inscanone can actually take a vector of numeric phenotype values, anjdist an indicator

to a phenotype column, and so we could have performed thefinad analysis without first pasting the binary phenotype
into thelisteria object, as follows.

out.p.alt <- scanone(listeria, pheno.col=as.numeric(li steria$pheno$T264==264),
model="binary")

10. A further approach is to use a non-parametric form ofriialemapping. R/qtl uses an extension of the Kruskal-Wallis
test statistic. Usscanone with model="np" . In this case, the argumentethod is ignored; the analysis method
is much like Haley-Knott regression. If the argumées.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE |, tied phenotypes are given the average rank and a corrastaaplied to the LOD score.

out.npl <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)

plot(out.npl, out.np2, col=c("blue”,"red"))
plot(out.2p, out.npl, out.np2, chr=c(1,5,13,15))

Note that the significance threshold for the non-paramegitome scan will be quite a bit smaller than that for the
two-part model. The two approaches for dealing with tieg dpasically the same results. Randomizing ties for the non-
parametric approach can give quite variable results indlse of a great number of ties, and so we would recommend the
use ofties.random=FALSE in this case.

Example 4: Covariatesin QTL mapping

As a further example, we illustrate the use of covariatesTh @apping. We consider some simulated backcross data.

1. Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

2. Perform genome scans for the two phenotypes without @tear Here we consider two phenotypes, scanned individu-
ally.
fake.bc <- calc.genoprob(fake.bc, step=2.5)
out.nocovar <- scanone(fake.bc, pheno.col=1:2)

3. Perform genome scans with sex as an additive covariatie tNat the covariates must be numeric. Factors may have to
be converted.

sex <- fake.bc$pheno$sex
out.acovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex)

12

Here, the average phenotype is allowed to be different itvtloesexes, but the effect of the putative QTL is assumed to
be the same in the two sexes.

. Note that the use of sex as an additive covariate resuitad increase in the LOD scores for phenotype 1, but resulted
in a decreased LOD score at the chr 5 locus for phenotype 2.

summary(out.nocovar, threshold=3, format="allpeaks")
summary(out.acovar, threshold=3, format="allpeaks")

plot(out.nocovar, out.acovar, chr=c(2, 5))
plot(out.nocovar, out.acovar, chr=c(2, 5), lodcolumn=2)

. Let us now perform genome scans with sex as an interaaiivariate, so that the QTL is allowed to be different in the
two sexes.

out.icovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex, intcovar=sex)

. The LOD score in the output is for the comparison of therfudidel with terms for sex, QTL and QMsex interaction
to the reduced model with just the sex term. Thus, the degfdesedom associated with the LOD score is 2 rather than
1, and so larger LOD scores will generally be obtained.

summary(out.icovar, threshold=3, format="allpeaks")

plot(out.acovar, out.icovar, chr=c(2,5), col=c("blue", "red"))
plot(out.acovar, out.icovar, chr=c(2,5), lodcolumn=2,
col=c("blue”, "red"))

. The difference between the LOD score with sex as an irtfeeacovariate and the LOD score with sex as an additive
covariate concerns the test of the Qd&ex interaction: does the QTL have the same effect in bo#ts§eXhe differences,
and a plot of the differences, may be obtained as follows.

out.sexint <- out.icovar - out.acovar

plot(out.sexint, lodcolumn=1:2, chr=c(2,5), col=c("gre en", "purple™))

The green and purple curves are for the first and second plpsmtrespectively.
. To test for the QT sex interaction, we may perform a permutation test. Thisoisperfect, as the permutation test

eliminates the effect of the QTL, and so we must assume tladistribution of the LOD score for the QX sex
interaction is the same in the presence of a QTL as under t¢iaighull hypothesis of no QTL effect.

The permutation test requires some care. We must perforarateppermutations with sex as an additive covariate and
with sex as an interactive covariate, but we must ensuregttiyng the “seed” for the random number generator, that they
use matched permutations of the data.

For the sake of speed, we will use Haley-Knott regressioandtiough the results above were obtained by standard
interval mapping. Also, we will perform just 100 permutaiso though 1000 would be preferred.

seed <- ceiling(runif(1, 0, 107°8))

set.seed(seed)

operm.acovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
method="hk", n.perm=100)

set.seed(seed)

operm.icovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
intcovar=sex, method="hk", n.perm=100)

Again, the differences concern the QXkex interaction.

operm.sexint <- operm.icovar - operm.acovar

We can ussummary to get the genome-wide LOD thresholds.

summary(operm.sexint, alpha=c(0.05, 0.20))

We can also use these results to look at evidence forXFEX interaction in our initial scans.

summary(out.sexint, perms=operm.sexint, alpha=0.1,
format="allpeaks", pvalues=TRUE)

13

Example5: Multiple QTL mapping

We return to théhyper data to illustrate some of the more advanced methods fooerglmultiple QTL models. Note
that the multiple QTL mapping features are currently impgated only for multiple imputation and Haley-Knott regiess
We use multiple imputation here, as Haley-Knott regrespieriorms poorly in the case of selective genotyping, whias w
used for thehyper data.

1.

First, let us delete everything in our workspace and tedoad thehyper data.

rm(list=Is())
data(hyper)

. We will be using the multiple imputation method throughthis example, and so we first need to perform the imputations

Recall that more imputations give more precise resultstdka more time and memory. To speed things along, we will
use only 16 imputations, even though much more would be meéatea definitive analysis. The small number of
imputations will make the following results somewhat urjiceable.

hyper <- sim.geno(hyper, step=2.5, n.draws=16, err=0.01)

. We first perform a single-QTL genome scan and inspect thdtse

outl <- scanone(hyper, method="imp")
plot(outl)

As you may recall from the results in Example 1, we have cleatemce for a QTL on chr 4, and strong evidence for a
QTL onchr 1. The LOD curve on chr 1 has an interesting doubék pguggestive of possibly two QTL.

There is a hint of further loci on chr 6 and 15 and elsewhere.

. In the presence of a large-effect QTL, as seen on chr 4, @yenish to repeat the scan, controlling for that locus. This

can make the loci with more modest effect more apparent.

A simple (but rough) approach is to pull out the genotypesafararker near the peak locus, and use that marker as an
additive covariate in a single-QTL scan. The peak markettfese data was D4Mit164:

max(outl)
If the peak LOD score is not at a marker, we may fisé.marker to identify the marker closest to the LOD peak.
find.marker(hyper, 4, 29.5)

. The functiorpull.geno may be used to pull out the genotype data for that marker, bilt see that most individuals

were not typed at D4Mit164.

g <- pull.geno(hyper)[,"D4Mit164"]
mean(is.na(g))

We may fill in the genotype data using a single imputation,taed use those imputed genotypes as if they were observed.
This is not ideal; we’ll do this analysis properly below.

g <- pull.geno(fill.geno(hyper))[,"D4Mit164"]

. Now we perform the genome scan, controlling for the chroi$o (Note that in an intercross, we would have to re-code

the genotype data to be a two-column numeric matrix.)
outl.c4 <- scanone(hyper, method="imp", addcovar=g)
We can plot the results together with the original genome.sca
plot(outl, outl.c4, col=c("blue", "red"))

The LOD curve on chr 1 went up quite a bit. (And, of course, tRELcurve on chr 4 went down to near 0.) To see the
effect of controlling for the chr 4 locus more clearly, we gdot the differences between the LOD scores.

plot(outl.c4 - outl, ylim=c(-3,3))

abline(h=0, Ity=2, col="gray")

. We may also look for loci that interact with the chr 4 locog,including marker D4Mit164 as an interactive covariate.

outl.c4i <- scanone(hyper, method="imp", addcovar=g, int covar=g)

The difference between these LOD scores and those obtaiited@Mit164 as a strictly additive covariate indicates
evidence for an interaction with the chr 4 locus.

14

10.

11.

plot(outl.c4i - outl.c4)
There is nothing particularly interesting here.

. Now let us perform a 2d scan. This will take a few minutesy@se doing the scan at a 2.5 cM step size.

out2 <- scantwo(hyper, method="imp")

. Let us look at some summaries for s@mntwo results. Recall that we need to provide five thresholds (seelgle 1,

item[18 on pagEl7). We'll ignore the threshold on the epista€iD score]l;, and use the thresholds suggested above.
summary(out2, thr=c(6.0, 4.7, Inf, 4.7, 2.6))

Your results may be different from mine, since we are usinfpsoimputations, but | see evidence for loci on chr 1 and
4 (which don't appear to interact) and loci on chr 6 and 15 ¢hldo show evidence of epistasis).

This didn’t pick up evidence for two QTL on chr 1; we can lookatitly at the chr 1 results as follows.
summary(subset(out2, chr=1))
The LOD score for a second, additive QTL on chr 2 (LQD is ~1.6; not strong, but not uninteresting.

Evidence for an interaction between loci on chr 7 and 15 had Ipeeviously reported. Those results may be inspected
as follows.

summary(subset(out2, chr=c(7,15)))
Again, this is interesting but not strong.

Let us look at some plots of tikeantwo results. First we make the standard plot with selected chsomes; the upper
triangle contains LODand the lower triangle contains LQD

plot(out2, chr=c(1,4,6,7,15))

The argument®wer andupper may be used to change what is plotted in the upper and loveergies. For example,
with lower="cond-int" , LODy,1 (evidence for a second QTL, allowing for epistasis) is digptl in the lower
triangle, while withlower="cond-add" , LOD,, (evidence for a second QTL, assuming no epistasis) is gisgla

plot(out2, chr=1, lower="cond-add")

plot(out2, chr=c(6,15), lower="cond-int")

plot(out2, chr=c(7,15), lower="cond-int")

Again, evidence for a second QTL on chr 1 is not strong. Exdddnor interacting QTL on chr 6 and 15 is quite strong;
the 7x 15 interaction is not.

We can also perform the 2d scan conditional on the chrusloé/e’ll do this just for chr 1, 6, 7, and 15, to save time.
out2.c4 <- scantwo(hyper, method="imp", addcovar=g, chr= ¢(1,6,7,15))

If we look at the same summaries as before, we see decreasieth@ for a second QTL on chr 1 and for thelIb
interaction, but increased evidence for thel® interaction.

summary(out2.c4, thr=c(6.0, 4.7, Inf, 4.7, 2.6))
summary(subset(out2.c4, chr=1))
summary(subset(out2.c4, chr=c(7,15)))

The sort of plots we made before remain interesting.

plot(out2.c4)

plot(out2.c4, chr=1, lower="cond-int")
plot(out2.c4, chr=c(6,15), lower="cond-int")
plot(out2.c4, chr=c(7,15), lower="cond-int")

We can also look at the differences in the LOD scores, to seerhoch conditioning on D4Mit164 has affected the
results. We need to subset our original results, since wesmanned selected chromosomes in the conditional analysis
Theallow.neg argument is used to allow negative LOD scores inghantwo plot, as they would generally be
replaced with 0.

out2sub <- subset(out2, chr=c(1,6,7,15))
plot(out2.c4 - out2sub, allow.neg=TRUE, lower="cond-int ")

15

12.

13.

14.

15.

Now let us turn to the fit of multiple-QTL models. The fuioctfitgtl is used to fit a specific model.

One must first pull out the data on fixed QTL locations usimakeqtl . We will consider the possibility of two QTL on
chr 1, but will ignore the putative QTL on chr 7.

gc <- c(1, 1, 4, 6, 15)

gp <- c(43.3, 78.3, 30.0, 62.5, 18.0)

gtl <- makeqtl(hyper, chr=qc, pos=qp)

We also create a “formula” which indicates which QTL are toif@uded in the fit and which interact; the colon (:)
indicates an interaction.

myformula <- y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5

We can now fit a model, including the<d5 interaction, and get a summary of the results.

out.fq <- fitqtl(hyper, qtl=qtl, formula = myformula)

summary(out.fq)

The first part of the summary describes the overall fit; the L$abre of~23 is the log, likelihood ratio comparing the
full model to the null model.

The second part of the summary gives results dropping ome &tra time from the model. In the presence of an
interaction, if a term included in the interaction is onttéhe interaction is also omitted, and so the rows for thedoc
chr 6 and 15 indicate 2 degrees of freedom.

One may also udéqtl to get estimated effects of the QTL in the context of the rplétiQTL model. We can use
drop=FALSE , so that the “drop one at a time” part of the analysis is notgoered, andget.ests=TRUE to get the
estimated effects.

out.fq <- fitgtithyper, qtl=qgtl, formula = myformula, drop =FALSE, get.ests=TRUE)
summary(out.fq)

The estimated effects are the differences between thedzgtgste and homozygote groups. The interaction effecs th
difference between the differences.

The functiorrefineqtl can be used to refine the estimated positions of the QTL indheegt of the multiple-QTL
model. A QTL object may be provided, or one may specify th@atosomes and positions, asnrakeqtl ; we'll use
the former approach.

revgtl <- refineqtl(hyper, gtl=qtl, formula = myformula)

The output is a QTL object, likgtl ; typing its name gives a brief summary.

revqtl

A couple of the QTL moved, but none by very much.

One may use thplot.qtl function to plot the locations of the QTL on the genetic map.
plot(revqtl)

We can re-rurfitqtl to get a fit with the new positions; the overall LOD score sdcudve increased slightly. (For
me, it increased from 23.0 to 23.7.)

out.fg2 <- fitqtl(hyper, gtl=revqtl, formula=myformula)
summary(out.fq2)

Thescangtl function is used to perform general genome scans in the xtootea multiple QTL model. It is quite
flexible, but not simple to use. For most purposes, one maysfoa the functionaddqtl andaddpair , which scan
for an additional QTL or pair of QTL, respectively, to add tmaltiple-QTL model.

We will first useaddqtl to perform a more precise version of our genome scan conditian the chr 4 locus. Previ-
ously, we had conditioned on imputed genotypes at a marlerthe LOD peak on chr 4. Witaddqtl we can do this
properly: take proper account of the missing genotype médion at the chr 4 locus, rather than taking genotypes from
a single imputation as if they had been observed.

Theaddqgtl function is much likefitgtl , taking a QTL object and formula as arguments. If the fornisilamitted,

all loci are assumed to be additive. The additional QTL todased may be included in the formula; if there are 5 QTL
in the input QTL object, refer to the new QTL &S&. This allows a scan with the new QTL interacting with one oreno
of the current QTL. If the new QTL is not included in the forrapit is assumed to be strictly additive.

16

16.

17.

18.

19.

20.

The following performs a scan on all chromosomes, contrglfiolely for the QTL on chromosome 4. (This is the third
QTL in the QTL objectrevgtl , and so we may use as the formula eityi&p3 or y"Q3+Q6. The former is allowed,
as an additional additive QTL is assumed.)

outl.c4r <- addgtl(hyper, qtl=revqtl, formula=y"Q3)

The output is of the same form as produced bygb@none function, and so we may use the same plot and summary
functions as are used fgcanone results. (Note that the LOD scores producedadyqtl are relative to the model
specified in the formula, omitting any terms including thelitidnal QTL being scanned, rather than relative to the null
model.).

We may now plot these results with those obtained earliez.r€bults are actually not too different.
plot(outl.c4, outl.c4r, col=c("blue", "red"))

It may be more informative to plot the differences

plot(outl.c4r - outl.c4, ylim=c(-1.7, 1.7))

abline(h=0, Ity=2, col="gray")

The functioraddpair may be used to perform a 2d scan for an additional pair of Q@hditioning on the locus on
chr 4. If the new QTL are not specified in the formula, a scamasantwo is performed (that is, for each possible pair
of positions for the new QTL, we fit a model in which the two newlQnteract and one in which they are additive).

out2.c4r <- addpair(hyper, gtl=revqtl, formula=y Q3, chr =c(1,6,7,15))

The results are of the same form as produceddantwo , and

We can plot the difference between these results and ouilopieresults.

plot(out2.c4r - out2.c4, lower="cond-int", allow.neg=TR UE)

Again, things have not changed dramatically.

The most interesting useadldqtl andaddpair is to scan for additional loci, starting with our five-QTL meddwith
the loci on 6 and 15 interacting).

First, we scan for an additional additive QTL.

out.1lmore <- addqtl(hyper, gtl=revqtl, formula=myformul a)
plot(out.1more)

There is not much evidence for an additional QTL.
We may next scan for an additional QTL that interacts witk of the QTL in our model, such as the QTL on chr 15.

This may be done by indicating the interaction in the formukingQ6to specify the new QTL, since there are five QTL
intherevgtl object.

out.iw4 <- addqtl(hyper, gtl=revqtl, formula=y"Q1+Q2+Q3 +Q4+Q5+Q4:Q5+Q6+Q5:Q6)
plot(out.iw4)

The LOD scores are just slightly higher, but there are twaekeg of freedom in the test. There’s nothing particularly
exciting here.

Now, let us scan for an additional pair. This will taketgLa bit of time, so let's focus on a few chromosomes: 2, 5, 7
and 15.

out.2more <- addpair(hyper, gtl=revqtl, formula=myformu la, chr=c(2,5,7,15))

Again, the results are of the form produceddmantwo , and so we may use the same plot and summary functions.
plot(out.2more, lower="cond-int")

Again, there’s nothing particularly exciting.

Another function of interest sddint , for testing the addition of each possible pairwise intéoais, one at a time, to

a multiple-QTL model.

out.ai <- addint(hyper, gtl=revqtl, formula=myformula)
out.ai

The results contain one row per interaction, and contairsétme sort of information as produced by in the drop-one
analysis offitqtl . As the base model (imyformula) contains an interaction between the loci on chr 6 and 15, tha
particular interaction is not tested.

17

21.

22.

23.

We should mention the functions for manipulating QTLeal§ (produced bmakeqtl): addtoqgtl , dropfromqgtl
replaceqtl , andreorderqtl

If the use ofaddqgtl andaddpair had indicated evidence for additional QTL, one could addithethe QTL object
with addtoqtl . As input, one provides the cross, the QTL object, and thernbsomes and positions of the QTL to
be added.

gtl2 <- addtoqtl(hyper, revqtl, 7, 53.6)
qti2

A QTL may be removed witldropfromqtl . One provides either the numeric index within the objea,@TL name,
or the chromosome and position of the QTL to be dropped.

qtl3 <- dropfromqtl(qtl2, index=2)
qtl3

We can useaeplaceqtl to move a particular QTL to a new position. One must provideittuex of the QTL to be
replaced.

gtl4 <- replaceqtl(hyper, qtl3, index=1, chr=1, pos=50)
qti4

We usereorderqtl to change the order of the loci within a QTL object.

gtl5 <- reorderqtl(qtl4, c(1:3,5,4))
qtls

Finally, we consider an automated model selection phareewith a stepwise search algorithm, using the function
stepwiseqtl . The function seeks to optimize a penalized LOD score aoitemvhich is the LOD score for a model
(relative to the null model with no QTL) with penalties on Ra@TL main effect and a separate penalty on interactions.

Actually, we include include two penalties on interactiom$ight penalty and a heavy penalty. We focus on models with
possible pairwise interactions among QTL, and with a haiaal structure in which the inclusion of an interactionme
requires the inclusion of both of the corresponding mainaff terms. Such a model may be represented by a graph in
which vertices (dots) represent QTL and edges (line segniitveen the dots) represent interactions between QTL. In
the penalized LOD score considereddigpwiseqtl , each disconnected component of a model is allowed one light
interaction penalty; all other interactions are assighechieavy penalty.

The three penalties may be calculed from permutation esuth scantwo , using the functiorcalc.penalties
We will use default penalties derived by computer simulati(2.69, 2.62, 1.19) for a mouse backcross, or (3.52, 4.28,
2.69) for a mouse intercross. (The penalties are in the @¢ndain, heavy interaction, light interaction).)

First, let us applystepwiseqtl , considering only additive QTL models (witddditive.only=TRUE . The algo-
rithm performs forward selection up to a model with a givember of QTL (specified by the argumentx.qtl ; we’'ll
use 6), followed by backward elimination.

stepout.a <- stepwiseqtl(hyper, additive.only=TRUE, max .qtl=6)
stepout.a

| obtained a model with two QTL, with one QTL on each of chr 1 dnd
Now let’s re-run the analysis, allowing for the possibilitfinteractions among the QTL.

stepout.i <- stepwiseqtl(hyper, max.qtl=6)

stepout.i

| obtained a model with four QTL, including one on each of ch4,16 and 15, and including an interaction between the
loci on chr 6 and 15.

Note that all of the above could be performed using H&legtt regression rather than multiple imputation. Jusé¢hr
changes need to be made.

First, one needs to rucalc.genoprob rather tharsim.geno , to calculate the QTL genotype probabilities rather
than perform imputations.

Second, in a call tanakeqtl , use the argumenthat="prob" , so that the genotype probabilities are placed in the
object rather than imputations.

Third, in calls tofitqgtl ,addqgtl , addpair , etc., useanethod="hk"

18

Example 6: Internal data structure

Finally, let us briefly describe the rather complicated ddtacture that R/gtl uses for QTL mapping experiments. Wlilisbe
rather dull, and will require a good deal of familiarity withe R (or S) language. The choice of data structure requoBtes
balance between ease of programming and simplicity for see imterface. The syntax for references to certain piettgeo
internal data can become extremely complicated.

1.

Get access to some sample data.
data(fake.bc)

. First, the object has a “class,” which indicates that itregponds to data for an experimental cross, and gives the

cross type. By having clagsoss , the functiongplot andsummary know to send the data tolot.cross and
summary.cross

class(fake.bc)

. Everycross object has two components, one containing the genotypeatiatgenetic maps and the other containing

the phenotype data.
names(fake.bc)

. The phenotype data is simply a matrix (more strictly a di@tae) with rows corresponding to individuals and columns

corresponding to phenotypes.
fake.bc$pheno[1:10,]

. The genotype data is a list with components corresportdicgromosomes. Each chromosome has a name and a class.

The class for a chromosome is eith@ or"X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

. Each component @feno contains two componentdata (containing the marker genotype data) anap (containing

the positions of the markers, in cM).

names(fake.bc$geno[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That'’s it for the raw data.

. When one runsalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross

object with the derived data attached to each componentfittemosomes) of thgeno component.

names(fake.bc$geno[[3]])

fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])

fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- calc.errorlod(fake.bc, err=0.01)

names(fake.bc$geno([3]])

. Finally, when one runest.rf , a matrix containing the pairwise recombination fractiansl LOD scores is added to

the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)

19

