
Genetic map construction with R/qtl

Karl W. Broman

University of Wisconsin-Madison

Department of Biostatistics & Medical Informatics

Technical Report # 214

4 November 2010

Revised 21 March 2012: some function names have changed

(e.g., plot.geno is now plotGeno)

Abstract: Genetic map construction remains an important prerequisite for quantitative trait
loci analysis in organisms for which genomic sequence is not available. Surprisingly little
has been written about the construction of genetic maps, particularly regarding the many
practical issues involved. We provide an overview of the process, including a description of
the key facilities in the R/qtl software. The process is illustrated through simulated data on
an F2 intercross derived from two inbred strains.

email : broman@wisc.edu

1

Introduction

Mouse geneticists no longer have to be concerned with genetic map construction, as the
available genomic sequence provides the physical locations and order of genetic markers.
Scientists interested in mapping quantitative trait loci (QTL) in other organisms, however,
often must first spend considerable time identifying polymorphic markers and then construct-
ing a genetic map specifying the chromosomal locations of the markers.

Surprisingly little has been written about the construction of genetic maps. Certainly, papers
describing seminal genetic maps include some description of the methods used, but students
desire a general overview of the process along with a discussion of key issues that arise
and how to overcome them. I attempt to provide such an overview here, along with a
description of the key facilities in R/qtl (Broman et al., Bioinformatics 18:889–890, 2003;
see https://rqtl.org) for genetic map construction. While I describe the use of R/qtl for
this purpose in considerable detail, I hope that my general comments are useful for, and
that the R code is not an obstacle to, readers interested in the process generally or in other
software.

R/qtl is principally aimed at the analysis of simple crosses (particularly backcrosses and
intercrosses) derived from a pair of inbred strains. R/qtl includes the ability to analyze
doubled haploids or a panel of recombinant inbred lines or even a phase-known four-way
cross, but here I will focus on the simple case of an intercross between two inbred strains.

Experimental design issues

Before proceeding with our discussion of genetic map construction, let us first describe some
of the design issues that a scientist should consider before embarking on such a project.

One must first ask: what sort of cross should be performed? As I have in mind a QTL
mapping application, I would suggest using the same cross (that is, the same material) for
both constructing a genetic map and for the subsequent QTL mapping. It is likely the case
that one will need a larger cross for the QTL mapping than for map construction, and also
one probably should use a larger set of markers for map construction than for QTL mapping.
Thus the ideal strategy may be to produce a large cross, for QTL mapping, but genotype
only a portion of that cross on the full set of markers. Once the genetic map is constructed,
one may then identify a smaller set of markers, which cover the genome as evenly as possible,
to genotype on the remainder of the cross.

In spite of the fact that map construction often requires fewer individuals than QTL mapping,
as a general rule one should use more than the minimal number of individuals for map
construction. Issues such as genotyping errors and segregation distortion are more easily
overcome with a larger cross population.

Similarly, one should aim for a much larger set of genetic markers than simple calculations
about genome size might indicate to be sufficient. In organisms with a mature complement of
genomic resources, one may choose an ideal set of markers that evenly cover the genome and
that are all well behaved and easily genotyped. In the de novo construction of a genetic map,
however, markers will be developed at random, and so some regions will be densely covered
with markers and other regions will be quite thin with markers. Variation in recombination

2

rate (as well as in marker density and polymorphism) will exacerbate this issue. Moreover,
one often finds that some markers are very difficult to genotype, and rather than spend
considerable time optimizing such markers (such as by redesigning primers or changing PCR
conditions), it would be most expedient if such poorly behaved markers could simply be
omitted. If one has at hand more markers than are really necessary, it is less of a concern to
be dropping 10% of them.

In the actual genotyping, one should always include DNA from the parental lines and F1

individuals as controls, preferably on each plate. Ideally, include the actual parents and F1

individuals; if residual heterozygosity is identified, the genotypes of these progenitors will be
extremely useful for making sense of the data. Additional blind duplicates are useful to give
some sense of the overall genotyping error rate.

Load the data

I will consider, as an illustration, a set of simulated data. Real data might be preferred, but
by considering simulated data, I can be sure that they feature all of the various issues that
I wish to illustrate. Moreover, these features can be made quite striking, so that there will
be little question here of what to do. In practice, aberrant features in the data will often be
less than clear and may require additional genotyping, or at least a reconsideration of the
raw genotyping results, before the appropriate action is clear.

The data set is called mapthis and is included in R/qtl version 1.19-10 and above. This
is an intercross between two inbred lines, with 300 individuals genotyped at 100 markers.
There is just one “phenotype,” which contains individual identifiers. The 100 markers were
chosen at random from five chromosomes of length 200, 150, 100, 75 and 50 cM, respectively.
The chromosomal locations of the markers are to be treated as unknown, though the marker
names do contain this information: marker C2M4 is the fourth marker on chromosome 2.
(Note that the chromosomes are all autosomes. I’m not considering the X chromosome in
this tutorial.)

To load the data, in R, one first needs to load the R/qtl package, using the function li-

brary(). The data set is then loaded via data().

> library(qtl)
> data(mapthis)

In practice, one would use the function read.cross() to load a data set into R. See the help
file (type ?read.cross), look at the sample data sets at https://rqtl.org/sampledata,
and consider Chapter 2 of Broman and Sen (2009) A Guide to QTL Mapping with R/qtl
(https://rqtl.org/book).

In assembling the sort of comma-delimited file that R/qtl can read, one should assign all
markers to the same chromosome (which can be named whatever is convenient, “1” or “un”
or whatever). There is no need to assign map positions to markers.

A data file for the mapthis data is at https://rqtl.org/tutorials/mapthis.csv. It can
be read into R as follows. (Note the use of estimate.map=FALSE. Markers will be assigned
dummy locations, with no attempt to estimate inter-marker distances.)

3

> mapthis <- read.cross("csv", "https://rqtl.org/tutorials", "mapthis.csv",
+ estimate.map=FALSE)

Omit individuals and markers with lots of missing data

After importing a new data set, the first thing I look at is a summary of the cross.

> summary(mapthis)

F2 intercross

No. individuals: 300

No. phenotypes: 1
Percent phenotyped: 100

No. chromosomes: 1
Autosomes: 1

Total markers: 100
No. markers: 100
Percent genotyped: 95.4
Genotypes (%): AA:26.2 AB:48.2 BB:25.6 not BB:0.0 not AA:0.0

I look to make sure that the cross type (in this case, an F2 intercross) was determined
correctly and that the numbers of individuals and markers is as expected. The function
summary.cross() also performs a variety of basic checks of the integrity of the data, and so
I’d pay attention to any warning or error messages.

Next, I look at the pattern of missing data, through the function plotMissing().

> plotMissing(mapthis)

The result (in Fig. 1) indicates several individuals with a great deal of missing data (hori-
zontal lines), as well as several markers with a great deal of missing data (vertical lines).

The function ntyped() provides the numbers of genotyped markers for each individual (or
the number of genotyped individuals for each marker). Let us plot these. (And note that
there is a related function, nmissing(), which provides the number of missing genotypes for
each individual or marker.)

> par(mfrow=c(1,2), las=1)
> plot(ntyped(mapthis), ylab="No. typed markers", main="No. genotypes by individual")
> plot(ntyped(mapthis, "mar"), ylab="No. typed individuals",
+ main="No. genotypes by marker")

As seen in Fig. 2, there are six individuals missing almost all genotypes, and there are four
markers that are missing genotypes at about half of the individuals. Such appreciable missing
data often indicates a problem (either bad DNAs or difficult-to-call markers) and can lead
to difficulties in the genetic map construction, and so it is best, at this stage, to omit them,
though one might consider adding them back in later.

To omit the individuals with lots of missing genotype data, we may use the function sub-

set.cross(), as follows.

4

20 40 60 80 100

50

100

150

200

250

300

Markers

In
d

iv
id

u
a

ls

Figure 1: Pattern of missing genotype data in the mapthis dataset. Black pixels indicate missing
genotypes.

0 50 100 200 300

20

40

60

80

100

No. genotypes by individual

Index

N
o
.

ty
p

e
d

 m
a

rk
e

rs

0 20 40 60 80 100

150

200

250

300

No. genotypes by marker

Index

N
o
.

ty
p

e
d

 i
n

d
iv

id
u

a
ls

Figure 2: Plot of number of genotyped markers for each individual (left panel) and number of
genotyped individuals for each marker (right panel).

5

No. matching genotypes

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

Figure 3: Histogram of the proportion of markers for which pairs of individuals have matching
genotypes.

> mapthis <- subset(mapthis, ind=(ntyped(mapthis)>50))

To omit the markers with lots of missing data, we first need to identify the names of the
markers. We then use drop.markers().

> nt.bymar <- ntyped(mapthis, "mar")
> todrop <- names(nt.bymar[nt.bymar < 200])
> mapthis <- drop.markers(mapthis, todrop)

Identify duplicate individuals

I find it useful to compare the genotypes between all pairs of individuals, in order to reveal
pairs with unusually similar genotypes, which may indicate sample duplications or monozy-
gotic twins. In either case, we will want to remove one individual from each pair. Such
duplicates are not common, but they are also not rare.

We use the function comparegeno to compare the genotypes for all pairs of individuals. The
output is a matrix, whose contents are the proportions of markers at which the pairs have
matching genotypes.

> cg <- comparegeno(mapthis)
> hist(cg[lower.tri(cg)], breaks=seq(0, 1, len=101), xlab="No. matching genotypes")
> rug(cg[lower.tri(cg)])

As seen in Fig. 3, a pair of F2 siblings typically share genotypes at 40% of the markers. But
there are some pairs with well over 90% matching genotypes. We may identify these pairs
as follows.

6

> wh <- which(cg > 0.9, arr=TRUE)
> wh <- wh[wh[,1] < wh[,2],]
> wh

row col
[1,] 214 216
[2,] 238 288
[3,] 144 292

We may inspect the genotype matches for these pairs with the following.

> g <- pull.geno(mapthis)
> table(g[144,], g[292,])

1 2 3
1 26 0 0
2 2 44 0
3 0 1 18

> table(g[214,], g[216,])

1 2 3
1 21 0 0
2 0 35 1
3 1 0 37

> table(g[238,], g[288,])

1 2 3
1 36 1 0
2 0 46 0
3 1 0 12

As seen above, in each case, the pairs have matching genotypes at all but 2 or 3 markers.
Ideally, one would go back to the records to try to assess the source of these problems (e.g.,
are the pairs from the same litters?). Here, we will simply omit one individual from each
pair. But first we will omit the genotypes that mismatch, as these are indicated to be errors
in one or the other individual (or both). The R code is a bit complicated.

> for(i in 1:nrow(wh)) {
+ tozero <- !is.na(g[wh[i,1],]) & !is.na(g[wh[i,2],]) & g[wh[i,1],] != g[wh[i,2],]
+ mapthis$geno[[1]]$data[wh[i,1],tozero] <- NA
+ }

Now, we omit one individual from each pair.

> mapthis <- subset(mapthis, ind=-wh[,2])

It’s also useful to look for duplicate markers (that is, markers with identical genotypes).
This is particularly true for the case of very large sets of markers; multiple markers with
identical genotypes will invariably map to the same location, and so one might as well thin
out the markers so that there are no such duplicates, as the extra markers simply slow down
all of our analyses. The function findDupMarkers() may be used to identify markers with
matching genotypes. (Note that the function drop.dupmarkers() is for dropping markers
with matching names, and considers the genotypes only in order to establish consensus
genotypes across the multiple markers with the same name). Here, though, there are no
markers with matching genotypes.

7

> print(dup <- findDupMarkers(mapthis, exact.only=FALSE))

NULL

Look for markers with distorted segregation patterns

We next study the segregation patterns of the markers. We expect the genotypes to appear
with the frequencies 1:2:1. Moderate departures from these frequencies are not unusual and
may indicate the presence of partially lethal alleles. Gross departures from these frequencies
often indicate problematic markers that should be omitted, at least initially: monomorphic
markers (that is, where the two parental lines actually have the same allele), or markers
that are especially difficult to call (e.g., AA are often called as AB). We use the function
geno.table to inspect the segregation patterns. It calculates the genotype frequencies and
also a P-value for a test of departure from the 1:2:1 expected ratios. We will focus on those
markers that show significant distortion at the 5% level, after a Bonferroni correction for the
multiple tests.

> gt <- geno.table(mapthis)
> gt[gt$P.value < 0.05/totmar(mapthis),]

chr missing AA AB BB not.BB not.AA P.value
C4M2 1 1 97 143 50 0 0 4.79e-04
C1M4 1 4 8 207 72 0 0 3.97e-19
C2M9 1 2 284 3 2 0 0 2.08e-180
C1M21 1 5 196 10 80 0 0 7.00e-75
C2M15 1 3 0 1 287 0 0 1.31e-186
C2M27 1 5 2 214 70 0 0 4.66e-23

The first of these markers, C4M2, is not terrible. The others appear to be monomorphic with
a few errors (C2M9 and C2M15) or have one genotype that is quite rare, which likely indicates
difficulties in genotyping. It would be best to omit the worst of these markers.

> todrop <- rownames(gt[gt$P.value < 1e-10,])
> mapthis <- drop.markers(mapthis, todrop)

Study individuals’ genotype frequencies

Just as we expect the markers to segregate 1:2:1, we expect the individuals to have genotype
frequencies that are in approximately those proportions. Studying such genotype frequencies
may help to identify individuals with high genotyping error rates or some other labeling or
breeding mistake.

There’s no R/qtl function to to pull out the genotype frequencies by individual, but we can
write a bit of R code to do so. It is a bit nasty, with calls to apply(), table(), factor(),
colSums() and t(), but hopefully the reader can figure this out after a bit of exploration
and introspection.

> g <- pull.geno(mapthis)
> gfreq <- apply(g, 1, function(a) table(factor(a, levels=1:3)))
> gfreq <- t(t(gfreq) / colSums(gfreq))
> par(mfrow=c(1,3), las=1)
> for(i in 1:3)
+ plot(gfreq[i,], ylab="Genotype frequency", main=c("AA", "AB", "BB")[i],
+ ylim=c(0,1))

8

0 50 150 250

0.0

0.2

0.4

0.6

0.8

1.0

AA

Index

G
e
n
o
ty

p
e
 f
re

q
u
e
n
c
y

0 50 150 250

0.0

0.2

0.4

0.6

0.8

1.0

AB

Index

G
e
n
o
ty

p
e
 f
re

q
u
e
n
c
y

0 50 150 250

0.0

0.2

0.4

0.6

0.8

1.0

BB

Index

G
e
n
o
ty

p
e
 f
re

q
u
e
n
c
y

Figure 4: Genotype frequencies by individual.

The results in Fig. 4 do not indicate any particular problems, though the small number of
short chromosomes result in considerable variability, including one individual with no BB
genotypes, and the frequencies of AB genotypes varies from 10–89%. However, if there were
an individual with ∼ 100% AA or BB genotypes (like one of the parental strains), we would
see it here.

A more fancy, and potentially more clear view of these genotype frequencies is obtained by
representing them as points in an equilateral triangle (see Fig. 5). For any point within an
equilateral triangle, the sum of the distances to the three sides is constant, and so one may
represent a trinomial distribution as a point within the triangle. I won’t show the code,
but note that the red X in the center of the figure corresponds to the expected genotype
frequencies (1/4, 1/2, 1/4). Each black dot corresponds to an individual’s genotype frequen-
cies. There’s one point along the right edge; this corresponds to the individual with no BB
genotypes. Again, the small size of the genome results in enormous variation, and so no one
individual stands out as unreasonable.

Study pairwise marker linkages; look for switched alleles

We are now in a position to begin the genetic map construction. We start by assessing
the linkage between all pairs of markers. The function est.rf() is used to estimate the
recombination fraction between each pair and to calculate a LOD score for a test of rf =
1/2. But first note that, in the presence of appreciable segregation distortion (which is not
the case for these data), unlinked markers can appear to be linked. For example, consider

9

AA

AB

BB

Figure 5: Genotype frequencies by individual, represented on an equilateral triangle. The red X
indicates the expected frequencies of 1:2:1.

the following 2×2 table of two-locus genotypes in a backcross.

Marker 2
Marker 1 AA AB overall

AA 243 27 270
AB 27 3 30

overall 270 30 300

In this case, the two markers are segregating independently but show severe segregation
distortion. (They segregate 9:1 rather than 1:1.) The usual estimate of the recombination
fraction is (27+27)/300 = 0.18, and the LOD score for the test of rf = 1/2 is ∼28.9.

If segregation distortion is rampant in a dataset (and such things do happen), the usual
tests of pairwise linkage will give distorted results, and so it is best to instead use a simple
chi-square or likelihood ratio test, to assess the association between markers. The function
markerlrt() behaves just like est.rf(), but uses a general likelihood ratio test in place of
the usual test of pairwise linkage.

Now back to the data, which are not so badly behaved.

> mapthis <- est.rf(mapthis)

Warning message:
In est.rf(mapthis) : Alleles potentially switched at markers
C3M16 C2M16 C1M2 C3M9 C2M14 C1M24 C1M1 C2M12 C1M36 C3M1 C2M25 C1M22 C5M5 C5M7 C1M17 C5M1
C3M5 C1M15 C2M24 C2M17 C1M23 C5M6 C1M16 C3M2 C3M10 C3M6 C2M13

10

Note the warning message, which indicates that there are numerous markers with likely
switched alleles (A ↔ B). This is indicated through pairs of markers that are strongly
indicated to be associated but have estimated recombination fractions ≫ 1/2. The check-

Alleles() function gives more detailed information on this issue.

> checkAlleles(mapthis, threshold=5)

marker chr index diff.in.max.LOD
4 C3M16 1 4 31.19
5 C2M16 1 5 55.02
8 C1M2 1 8 5.52
9 C3M9 1 9 39.57
12 C2M14 1 12 32.54
17 C1M24 1 17 5.76
18 C1M1 1 18 102.00
19 C2M12 1 19 6.22
35 C1M36 1 35 92.99
38 C3M1 1 38 49.19
41 C2M25 1 41 38.53
42 C1M22 1 42 5.77
45 C5M5 1 45 17.34
49 C5M7 1 49 24.09
51 C1M17 1 51 9.80
54 C5M1 1 54 25.76
55 C3M5 1 55 53.61
58 C1M15 1 58 21.98
60 C2M24 1 60 104.63
65 C2M17 1 65 43.55
69 C1M23 1 69 88.31
70 C5M6 1 70 15.60
76 C1M16 1 76 86.79
83 C3M2 1 83 24.93
84 C3M10 1 84 48.88
89 C3M6 1 89 10.65
91 C2M13 1 91 44.01

The final column in the output for a marker, diff.in.max.LOD, is the difference between
the maximum LOD score for the cases where the estimated recombination fraction is > 1/2
and the maximum LOD score for the cases where the estimated recombination fraction is <
1/2. There are a large number of markers that are tightly associated with other markers,
but with recombination fractions well above 1/2, which indicates that some markers likely
have their alleles switched.

A plot of the LOD scores against the estimated recombination fractions for all marker pairs
will give another good view of this problem. We use the function pull.rf() to pull out the
recombination fractions and LOD scores as matrices.

> rf <- pull.rf(mapthis)
> lod <- pull.rf(mapthis, what="lod")
> plot(as.numeric(rf), as.numeric(lod), xlab="Recombination fraction", ylab="LOD score")

As seen in Fig. 6, there are many marker pairs with large LOD scores but estimated recom-
bination fractions ≫ 1/2.

One solution to this problem is to form initial linkage groups, ensuring that markers with rf
> 1/2 are placed in different groups. If all goes well, each chromosome will come out as a
pair of linkage groups: one containing markers with correct alleles and another containing
markers with switched alleles.

11

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

Recombination fraction

L
O

D
 s

c
o

re

Figure 6: Plot of LOD scores versus estimated recombination fractions for all marker pairs.

We use the function formLinkageGroups() to infer linkage groups. It uses the pairwise
linkage results from est.rf() (or, pairwise association information from markerlrt()).
The function has two main arguments: max.rf and min.lod. Two markers will be placed
in the same linkage groups if they have estimated recombination fraction ≤ max.rf and
LOD score ≥ min.lod. The linkage groups are closed via the transitive property. That
is, if markers a and b are linked and markers b and c are linked, then all three are placed
in the same linkage group. I generally start with min.lod relatively large (say 6 or 8 or
even 10). The appropriate value depends on the number of markers and chromosomes (and
individuals). The aim is to get as many truly linked markers together, but avoid completely
putting unlinked markers in the same linkage group. It is usually easier to combine linkage
groups after the fact rather than to have to split linkage groups apart.

> lg <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6)
> table(lg[,2])

1 2 3 4 5 6 7 8 9 10 11
29 21 10 9 6 5 4 3 2 1 1

The output of formLinkageGroups() is a matrix with two columns: the initial linkage group
or chromosome for each marker, and then the assigned linkage group, as inferred from the
pairwise linkage information. The inferred linkage groups are numbered in decreasing order
of size (so that linkage group 1 has the largest number of markers). Here we see that 11
linkage groups were inferred, with the last 2 groups having just one marker. One may play
with max.rf and min.lod until the result is about as expected. Here, I was hoping for about
10 linkage groups (since there are five chromosomes but each will likely be split in two due
to the allele switching problem), and so the results seem okay.

12

Since we are happy with the results, we can reorganize the markers into these inferred
linkage groups. We do so with the same function, formLinkageGroups(), via the argument
reorgMarkers.

> mapthis <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6, reorgMarkers=TRUE)

A plot of the pairwise recombination fractions and LOD scores may indicate how well this
worked.

> plotRF(mapthis, alternate.chrid=TRUE)

The result, in Fig. 7, looks about as expected. The markers within linkage group 1 are linked
to each other. The pattern within the group is a bit random, but that is because we have
not yet ordered the markers in any way.

Note that linkage groups 4 and 5 are associated with each other, in that they have large LOD
scores (the lower-right rectangle for groups 4 and 5 is largely red), but their recombination
fractions are not small (the upper-left rectangle for groups 4 and 5 is strongly blue). I would
infer from this that these markers belong to the same chromosome, but the alleles in one or
the other group are switched. We can’t know which is correct, and ideally one would have
parental genotype data to help fix these problems, but it is not unreasonable, for now, to
assume that the larger group of markers corresponds to the ones with the correct alleles.

Similarly, groups 6 and 7 belong together, group 8 belongs to group 2, and groups 9–11
belong to group 1.

We can look at this more clearly by picking out a marker from one group and studying
the recombination fractions and LOD scores for that marker against all others. Let us
pick the third marker in linkage group 4. We create the objects rf and lod again, using
pull.rf(). These objects have class "rfmatrix", and so plot below actually goes to the
function plot.rfmatrix(), which plots the values for a single marker in a display similar to
a set of LOD curves.

> rf <- pull.rf(mapthis)
> lod <- pull.rf(mapthis, what="lod")
> mn4 <- markernames(mapthis, chr=4)
> par(mfrow=c(2,1))
> plot(rf, mn4[3], bandcol="gray70", ylim=c(0,1), alternate.chrid=TRUE)
> abline(h=0.5, lty=2)
> plot(lod, mn4[3], bandcol="gray70", alternate.chrid=TRUE)

As seen in Fig. 8, the marker C3M13 is strongly associated with markers in both linkage
groups 4 and 5, but the estimated recombination fractions between C3M13 and the markers
on linkage group 4 are all < 1/2, while the estimated recombination fractions between C3M13

and the markers on linkage group 5 are all > 1/2. We can see the problem even more clearly
by inspecting a few tables of two-locus genotypes, produced by geno.crosstab().

> geno.crosstab(mapthis, mn4[3], mn4[1])

C3M11
C3M13 - AA AB BB

- 0 2 3 2
AA 3 50 9 0
AB 1 15 101 16
BB 1 1 13 74

13

20 40 60 80

20

40

60

80

Markers

M
a
rk

e
rs

1

1

3

3

5

5

7

7

9

9

11
11

2

2

4

4

6

6

8

8

10

10

Figure 7: Plot of estimated recombination fractions (upper-left triangle) and LOD scores (lower-
right triangle) for all pairs of markers. Red indicates linked (large LOD score or small recombination
fraction) and blue indicates not linked (small LOD score or large recombination fraction).

14

0.0
0.2
0.4
0.6
0.8
1.0

C3M13

Chromosome

rf

1 3 5 7 9 11
2 4 6 8 10

0
20
40
60
80

C3M13

Chromosome

lo
d

1 3 5 7 9 11
2 4 6 8 10

Figure 8: Plot of estimated recombination fractions (top panel) and LOD scores (bottom panel)
for the marker C3M13 against all other markers.

15

> mn5 <- markernames(mapthis, chr=5)
> geno.crosstab(mapthis, mn4[3], mn5[1])

C3M16
C3M13 - AA AB BB

- 0 3 3 1
AA 1 0 17 44
AB 0 16 100 17
BB 1 62 26 0

It is clear that, if the genotypes for C3M13 are correct, then the A and B alleles for C3M16
are switched.

In practice, I will look at enormous numbers of these sorts of two-locus genotype tables in
order to figure out what is going on. But these data are (by design) quite clean, and so
we will simply trust that the alleles need to be switched for all of the markers on linkage
groups 5 and 7–11. The function switchAlleles() is convenient for performing the allele
switching.

> toswitch <- markernames(mapthis, chr=c(5, 7:11))
> mapthis <- switchAlleles(mapthis, toswitch)

Now when we revisit the plot of recombination fractions and LOD scores, we will see a quite
different picture. (Note that we need to re-run est.rf() after having run switchAlleles().)

> mapthis <- est.rf(mapthis)
> plotRF(mapthis, alternate.chrid=TRUE)

As seen in Fig. 9, the LOD scores between marker pairs are unchanged, but now the recom-
bination fractions are small (indicated in red) for marker pairs with evidence of association
(large LOD scores, also in red).

It is useful to revisit the plot of LOD scores versus recombination fractions for all pairs.

> rf <- pull.rf(mapthis)
> lod <- pull.rf(mapthis, what="lod")
> plot(as.numeric(rf), as.numeric(lod), xlab="Recombination fraction", ylab="LOD score")

Now we see (in Fig. 10) no estimated recombination fractions that are much above 1/2, and
certainly no large recombination fractions with large LOD scores. In fact, the largest LOD
score for marker pairs with estimated recombination fraction > 1/2 is 1.38.

Form linkage groups

We now should have the genotype data in good shape and can finally proceed to the actual
map construction. First, we again attempt to infer the linkage groups, with the hope that
we’ll come away with exactly five.

> lg <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6)
> table(lg[,2])

1 2 3 4 5
33 24 15 10 9

16

20 40 60 80

20

40

60

80

Markers

M
a
rk

e
rs

1

1

3

3

5

5

7

7

9

9

11
11

2

2

4

4

6

6

8

8

10

10

Figure 9: Plot of estimated recombination fractions (upper-left triangle) and LOD scores (lower-
right triangle) for all pairs of markers, after having switched alleles for many markers. Red indicates
linked (large LOD score or small recombination fraction) and blue indicates not linked (small LOD
score or large recombination fraction).

17

0.0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

120

Recombination fraction

L
O

D
 s

c
o

re

Figure 10: Plot of LOD scores versus estimated recombination fractions for all marker pairs, after
alleles at many markers have been switched.

Right; we’ve got five groups. Now we reorganize the markers again.

> mapthis <- formLinkageGroups(mapthis, max.rf=0.35, min.lod=6, reorgMarkers=TRUE)

It is useful to plot the pairwise recombination fractions and LOD scores again.

> plotRF(mapthis)

As seen in Fig. 11, we have five clear linkage groups, with markers within a group linked
to one another, and markers in distinct groups showing no evidence of linkage. The results
couldn’t possibly be cleaner (and they wouldn’t be, if these were real data).

Order markers on chromosome 5

We now turn to the problem of ordering markers within each linkage group. (We could go
ahead and call them chromosomes at this point.) I always start with the chromosome with
the fewest markers, as there are fewer possible orders and so the process is quicker. I like to
see some progress before I move to the larger chromosomes.

The function orderMarkers()may be used to establish an initial order. It picks an arbitrary
pair of markers, and then adds an additional marker (chosen at random), one at a time, in
the best supported position. With the argument use.ripple=TRUE, the function ripple()

is used after the addition of each marker, to consider all possible orders in a sliding window of
markers, to attempt to improve marker order. The argument window defines the length of the
window. Larger values will explore more possible orders but will require considerably more
computation time. The value window=7 is usually about the largest one would ever consider;

18

20 40 60 80

20

40

60

80

Markers

M
a
rk

e
rs

1

1

2

2

3

3

4

4

5

5

Figure 11: Plot of estimated recombination fractions (upper-left triangle) and LOD scores (lower-
right triangle) for all pairs of markers, after markers have been placed in their final linkage groups.
Red indicates linked (large LOD score or small recombination fraction) and blue indicates not linked
(small LOD score or large recombination fraction).

19

use of window=8 will take so long that one would not want to sit and wait. Note that the
other arguments to orderMarkers (e.g., error.prob and map.function) are passed to the
function est.map() for estimation of the genetic map with the final order that is chosen.
Also note that ripple(), in this case, chooses among orders in order to minimize the number
of obligate crossovers. More on this below.

> mapthis <- orderMarkers(mapthis, chr=5)

We may use pull.map() to inspect the result.

> pull.map(mapthis, chr=5)

C5M1 C5M3 C5M4 C5M5 C5M6 C5M7 C5M8 C5M9 C5M10
0.00 1.40 3.30 5.37 10.00 11.03 14.23 39.31 42.11

Since the marker names were chosen to indicate the true marker order, we can see that we
got the order exactly right. (Though note that the second marker, C5M2 was omitted at some
point during the course of our analysis.) Of course, we wouldn’t know this, and so we should
make an attempt to explore alternate orders, in case another order might be seen to be an
improvement.

We use ripple() to explore alternate orders. As mentioned above, it considers all possible
orders of markers in a sliding window of fixed length, with the argument window defining
the width of the window. If window is equal to the number of markers on the chromosome,
than all possible orders are considered.

The quickest approach is to count the number of obligate crossovers for each order. The
good orders generally are those that result in the smallest numbers of crossovers. The more
refined, but considerably slower approach, is to compare the likelihoods of the different
orders. (The likelihood for a given marker order is the probability of the data assuming that
order is correct and plugging in estimates of the inter-marker distances.) We do this with
method="likelihood" in ripple(). We may also indicate a genotyping error probability
(through error.prob).

While we could start by comparing orders to minimize the number of obligate crossovers
(with method="countxo", the default, in ripple()), this was already done when we called
orderMarkers(), and it is not necessary to run it again. Nevertheless, the results will
indicate how close, in terms of number of crossovers, the next-best marker order is to the
inferred one.

> rip5 <- ripple(mapthis, chr=5, window=7)

13680 total orders

> summary(rip5)

obligXO
Initial 1 2 3 4 5 6 7 8 9 215
1 1 2 3 4 5 6 7 9 8 216
2 1 2 3 4 6 5 7 8 9 217

20

As seen above, 13,680 marker orders were considered. (There are 9!/2 = 181,440 total
marker orders.) On my computer, the code above took about 1.5 seconds. If we’d looked
at all possible orders (that is, with window=9), it would take about 14 seconds, but the
results—I checked—are the same.) Switching markers 8 and 9 results in one additional
obligate crossover. If, instead, one switches markers 5 and 6, there are two additional obligate
crossovers.

It is good to also study the likelihood of different orders, though we will want to greatly
reduce the window argument, so that it can be accomplished in a reasonable amount of time.

> rip5lik <- ripple(mapthis, chr=5, window=4, method="likelihood",
+ error.prob=0.005)

114 total orders

> summary(rip5lik)

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 0.0 38.2
1 1 2 3 4 5 6 7 9 8 0.1 38.5

The result (on my computer) took about two minutes. We see that switching markers 8
and 9 has a LOD score (that is, log10 likelihood, relative to the initial order) of 0.1, which
indicates that it is slightly preferred. However, the estimated chromosome length is slightly
longer (38.5 versus 38.2 cM).

We know, from the marker names, that the initial order was the true order, but in practice
we would not have such information, and we would probably want to switch markers 8 and
9. Usually we are looking to have the estimated chromosome length be as short as possible,
but if we trust the likelihood calculation, we should go with the alternate order. Of course,
the two orders are not really distinguishable; we can’t really say, on the basis of these data,
whether the correct order is the first or the second.

Note that the results here can be sensitive to the assumed genotyping error rate. (I chose
error.prob=0.005 above, because the data were simulated with this error rate.) The func-
tion compareorder() can be used to compare an initial order to a fixed alternative order.
We can use this to quickly inspect how sensitive the results are to the assumed error rate.

> compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0.01)

LOD length
orig 0.0000 36.6
new 0.0354 36.9

> compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0.001)

LOD length
orig 0.000 40.6
new 0.181 40.8

21

> compareorder(mapthis, chr=5, c(1:7,9,8), error.prob=0)

LOD length
orig 0.000 45.4
new 0.244 45.6

These results indicate that with smaller assumed genotyping error rates, the evidence in favor
of switching markers 8 and 9 increases somewhat. Note also that the map length increases
quite a bit.

If we were looking at these data blindly, I would likely go with switching markers 8 and 9,
so let’s go ahead and do that here. We use switch.order() to do so. It takes the same
sort of arguments as est.map(), as after the marker order is switched, est.map() is called
to revise the estimated map for the chromosome.

> mapthis <- switch.order(mapthis, chr=5, c(1:7,9,8), error.prob=0.005)
> pull.map(mapthis, chr=5)

C5M1 C5M3 C5M4 C5M5 C5M6 C5M7 C5M8 C5M10 C5M9
0.00 1.09 2.64 4.24 8.31 8.90 11.55 36.11 38.45

Note that the map is slightly smaller than what we had seen above, after running order-

Markers(), as we had used the default value for error.prob in that function, and now we
are using error.prob=0.005. Also note that markers C5M10 and C5M9 are quite close to-
gether and are separated from the next marker by 24.6 cM. This explains why it is difficult
to assess the appropriate order for these two markers.

Order markers on chromosome 4

We now turn to chromosome 4. First, we run orderMarkers() and print out the estimated
map.

> mapthis <- orderMarkers(mapthis, chr=4)
> pull.map(mapthis, chr=4)

C4M1 C4M2 C4M3 C4M4 C4M5 C4M6 C4M7 C4M8 C4M10 C4M9
0.0 17.0 23.7 28.7 35.9 44.3 47.7 50.0 61.4 63.9

The marker names tell us the true order, and so we see that the inferred order is correct
except that markers C4M10 and C4M9 are switched. Let us run ripple(), to see which orders
have similar numbers of obligate crossovers.

> rip4 <- ripple(mapthis, chr=4, window=7)

18000 total orders

> summary(rip4)

obligXO
Initial 1 2 3 4 5 6 7 8 9 10 326
1 1 2 3 4 5 6 7 8 10 9 326

22

The order with markers 9 and 10 switched gives the same number of obligate crossovers,
and so we can not distinguish between these two marker orders. We turn to the likelihood
comparison.

> rip4lik <- ripple(mapthis, chr=4, window=4, method="likelihood",
+ error.prob=0.005)

132 total orders

> summary(rip4lik)

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 10 0.0 57.7
1 1 2 3 4 5 6 7 8 10 9 1.2 57.6

There is reasonably good evidence to switch markers 9 and 10 (which is nice, as this results
in the true marker order).

> mapthis <- switch.order(mapthis, chr=4, c(1:8,10,9), error.prob=0.005)
> pull.map(mapthis, chr=4)

C4M1 C4M2 C4M3 C4M4 C4M5 C4M6 C4M7 C4M8 C4M9 C4M10
0.0 16.2 22.3 27.1 33.7 41.3 44.0 45.8 56.0 57.6

Order markers on chromosome 3

Turning to chromosome 3, we again run orderMarkers(). These calculations are starting
to take quite a bit of time. It would all be faster if we reduced the argument window to a
smaller value (say 4 rather than 7), but then not as many alternate orders will be explored
and so we may not identify the best order.

> mapthis <- orderMarkers(mapthis, chr=3)
> pull.map(mapthis, chr=3)

C3M16 C3M15 C3M14 C3M13 C3M12 C3M11 C3M10 C3M9 C3M8 C3M6 C3M5 C3M4 C3M3 C3M2
0.0 14.7 15.9 19.5 29.3 32.6 43.9 47.5 64.1 85.3 101.8 107.3 109.4 121.3
C3M1
127.4

Note, from the marker names, that the marker order is the true order. The whole chromosome
is flipped, but we have no information, from the genotype data, to orient the chromosome.
Let us again use ripple() to study alternate orders.

> rip3 <- ripple(mapthis, chr=3, window=7)

39600 total orders

> summary(rip3)

23

obligXO
Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 635
1 1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 641

The next-best order, with markers 2 and 3 switched, results in an additional 6 obligate
crossovers. We turn to the likelihood comparison.

> rip3lik <- ripple(mapthis, chr=3, window=4, method="likelihood",
+ error.prob=0.005)

222 total orders

> summary(rip3lik)

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0.0 111
1 1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 -2.4 110

The next-best order (with markers 2 and 3 switched) is considerably worse than our initial
order.

Order markers on chromosome 2

We turn to chromosome 2, beginning with orderMarkers().

> mapthis <- orderMarkers(mapthis, chr=2)
> pull.map(mapthis, chr=2)

C2M1 C2M2 C2M3 C2M4 C2M5 C2M6 C2M8 C2M10 C2M11 C2M12 C2M13 C2M14 C2M16 C2M17
0.0 14.8 26.6 28.0 34.0 35.8 58.1 74.4 78.4 86.6 94.0 98.6 109.0 110.6

C2M18 C2M19 C2M20 C2M21 C2M22 C2M23 C2M24 C2M25 C2M26 C2M28
124.2 126.3 131.7 138.5 150.1 157.4 163.3 164.2 174.2 186.9

Again, as seen from the marker names, the inferred order is the true one. Let us run ripple()

to inspect alternate orders.

> rip2 <- ripple(mapthis, chr=2, window=7)

78480 total orders

> summary(rip2)

obligXO
Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 942
1 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 948

The next-best order, with markers 3 and 4 switched, has 6 additional obligate crossovers.
We turn to the likelihood comparison.

> rip2lik <- ripple(mapthis, chr=2, window=4, method="likelihood",
+ error.prob=0.005)

384 total orders

24

950 1000 1050 1100 1150

−200

−150

−100

−50

0

obligate crossover count

L
O

D
 s

c
o

re

Figure 12: Comparison of the number of obligate crossovers to the LOD score (relative to our
inferred order), for chromosome 2 marker orders explored via ripple().

> summary(rip2lik)

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0.0 161
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 21 23 24 -2.4 161

The next-best order, in terms of likelihood, has markers 21 and 22 switched, and is consid-
erably worse than our initial order.

It is interesting to compare the numbers of obligate crossovers for different orders to the
LOD scores. We have LOD scores for a much smaller number of orders (384 versus 78,480),
since we had used a smaller value for window, but we can pull out the obligate crossover
counts for those orders that we evaluated in terms of likelihood. It is a bit tricky to line up
the orders.

> pat2 <- apply(rip2[,1:24], 1, paste, collapse=":")
> pat2lik <- apply(rip2lik[,1:24], 1, paste, collapse=":")
> rip2 <- rip2[match(pat2lik, pat2),]
> plot(rip2[,"obligXO"], rip2lik[,"LOD"], xlab="obligate crossover count",
+ ylab="LOD score")

As seen in Fig. 12, there is a clear negative relationship between the crossover counts and
the likelihoods, though the relationship is not perfect, particularly for the orders that are
not well supported.

Order markers on chromosome 1

Finally, we turn to chromosome 1, first running orderMarkers().

25

> mapthis <- orderMarkers(mapthis, chr=1)
> pull.map(mapthis, chr=1)

C1M1 C1M2 C1M3 C1M5 C1M6 C1M7 C1M8 C1M9 C1M10 C1M11 C1M12 C1M13
0.00 1.68 4.50 15.30 20.43 34.09 38.67 41.16 46.48 54.37 60.16 61.20
C1M14 C1M15 C1M16 C1M17 C1M18 C1M19 C1M20 C1M22 C1M23 C1M24 C1M25 C1M26
65.21 70.57 72.75 80.87 94.85 99.00 100.21 106.14 107.35 108.18 111.37 135.85
C1M27 C1M28 C1M29 C1M30 C1M31 C1M33 C1M34 C1M35 C1M36
181.40 200.20 202.83 205.46 206.47 220.43 234.60 235.50 239.29

Again, the inferred order is precisely the true order. I was quite surprised to see how
well orderMarkers() performed with these data. Of course, the data are quite clean (by
design) and comprise quite a large number of individuals. In practice, one can’t expect
orderMarkers() to perform so well, and it is worthwhile to study the estimated map and
the pairwise linkage information closely. We will do so in a moment, but first let’s complete
our analysis of chromosome 1 by studying the results of ripple.

> rip1 <- ripple(mapthis, chr=1, window=7)

117360 total orders

> summary(rip1)

Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 28
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

obligXO
Initial 30 31 32 33 1155
1 30 31 32 33 1157
2 30 32 31 33 1157

Two alternate orders (switching markers 28 and 29, or switching markers 31 and 32) have
2 additional obligate crossovers, compared to our initial order. We turn to the likelihood
comparison.

> rip1lik <- ripple(mapthis, chr=1, window=4, method="likelihood",
+ error.prob=0.005)

546 total orders

> summary(rip1lik)

Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 28

LOD chrlen
Initial 30 31 32 33 0.0 213
1 30 31 32 33 -1.7 212

26

The next best order (switching markers 28 and 29) results in a moderately large decrease in
likelihood, and so we stick with the initial order produced by orderMarkers().

Let us return to the question of how to assess the quality of the results of orderMark-

ers(), aside from our investigations with ripple(). The ripple() analysis is excellent for
comparing nearby marker orders. And for chromosomes with a modest number of markers
(like chromosome 5, here), one can consider all possible orders exhaustively. But with many
markers (as with chromosome 1), we can investigate only a small proportion of the possible
orders. For example, with 33 markers (as on chromosome 1), there are 33!/2 ≈ 1036 possible
marker orders, and we investigated only 117,360 of them using ripple with window=7.

There are several things to look it, in assessing whether gross changes in marker order are
necessary. (Ideally, R/qtl would include a function providing a more complete investigation
of marker order, perhaps via simulated annealing or another randomized optimization algo-
rithm, and we do hope to implement such a feature in the future.) First, we should look at
the actual map: are there large gaps between markers, indicating adjacent markers that are
only weakly linked? Studying the map locations with pull.map(), as above, is hard when
there are lots of markers. The function summaryMap() provides a summary of the average
inter-marker distance and the largest gap on each chromosome.

> summaryMap(mapthis)

n.mar length ave.spacing max.spacing
1 33 239.3 7.5 45.6
2 24 186.9 8.1 22.3
3 15 127.4 9.1 21.2
4 10 57.6 6.4 16.2
5 9 38.5 4.8 24.6
overall 91 649.6 7.6 45.6

We see that chromosome 1 has a 45.6 cM gap; the other chromosomes have gaps no larger
than 25 cM. The large gap on chromosome 1 is suspicious, but it is not terrible.

In addition to this summary, it is good to also plot the map. We use the argument
show.marker.names=TRUE so that marker names are included. Most of them are unreadable,
because the markers are densely spaced, but at least we learn the identity of markers that
are surrounded by large gaps.

> plotMap(mapthis, show.marker.names=TRUE)

As seen in Fig. 13, there are some large gaps on chromosome 1 and some smaller gaps on
the other chromosomes. They deserve further investigation (and we will do so in the next
section), but they aren’t particularly troubling. With gross mistakes in marker order, one
will often see much larger gaps, say > 100 cM.

Finally, we inspect the pairwise linkage information again.

> plotRF(mapthis)

27

200

150

100

50

0

Chromosome

L
o

c
a

ti
o

n
 (

c
M

)
C1M1C1M2C1M3
C1M5C1M6
C1M7C1M8C1M9C1M10C1M11C1M12C1M13C1M14C1M15C1M16
C1M17
C1M18C1M19C1M20C1M22C1M23C1M24C1M25

C1M26

C1M27
C1M28C1M29C1M30C1M31
C1M33
C1M34C1M35C1M36

C2M1
C2M2
C2M3C2M4C2M5C2M6

C2M8
C2M10C2M11
C2M12C2M13C2M14
C2M16C2M17
C2M18C2M19C2M20C2M21
C2M22C2M23C2M24C2M25
C2M26
C2M28

C3M16
C3M15C3M14C3M13
C3M12C3M11
C3M10C3M9
C3M8

C3M6
C3M5C3M4C3M3
C3M2C3M1

C4M1
C4M2C4M3C4M4C4M5C4M6C4M7C4M8
C4M9C4M10

C5M1C5M3C5M4C5M5C5M6C5M7C5M8

C5M10C5M9

1 2 3 4 5

Figure 13: Plot of the estimated genetic map, after the markers on each chromosome have been
ordered.

The pairwise linkage information in Fig. 14 is close to what we want to see: nearby markers
show clear association and no distant markers show any association: red along the diagonal,
dissipating to blue away from the diagonal.

If there were gross problems with marker order, we might see groups of distantly placed
markers that are more highly associated than more closely placed markers. Just as an
example, suppose we split chromosome 1 into three pieces and moved the latter piece into
the middle. Let’s look at the pairwise linkage information following such a re-ordering.

> messedup <- switch.order(mapthis, chr=1, c(1:11,23:33,12:22),
+ error.prob=0.005)
> plotRF(messedup, chr=1)

Fig. 15 (on page 30) displays the sort of pattern one should expect with gross problems in
marker order: the markers in the first and last segments are more tightly associated to each
other than they are to the markers in the middle segment.

A plot of the genetic map (see Fig. 16, page 30) shows a 50 cM gap between the first and
middle segments and an 80 cM gap between the middle and last segments.

> plotMap(messedup, show.marker.names=TRUE)

The map is not as telling as the pairwise linkage information, but these are the sorts of things
to look at, in trying to decide whether there are gross problems that need to be corrected.

If features such as those in Fig. 15 and 16 were seen, one should identify the segments
of markers that need to be moved around, and then use switch.order() to reorganize

28

20 40 60 80

20

40

60

80

Markers

M
a
rk

e
rs

1

1

2

2

3

3

4

4

5

5

Figure 14: Plot of estimated recombination fractions (upper-left triangle) and LOD scores (lower-
right triangle) for all pairs of markers, after ordering the markers on each chromosome. Red
indicates linked (large LOD score or small recombination fraction) and blue indicates not linked
(small LOD score or large recombination fraction).

29

5 10 15 20 25 30

5

10

15

20

25

30

Markers

M
a

rk
e

rs

1

1

Figure 15: Plot of estimated recombination fractions (upper-left triangle) and LOD scores (lower-
right triangle) for all pairs of markers on chromosome 1, after messing up the order of the markers.
Red indicates linked (large LOD score or small recombination fraction) and blue indicates not linked
(small LOD score or large recombination fraction).

350

300

250

200

150

100

50

0

Chromosome

L
o

c
a

ti
o

n
 (

c
M

)

C1M1C1M2C1M3C1M5C1M6
C1M7C1M8C1M9C1M10C1M11C1M12

C1M25
C1M26

C1M27
C1M28C1M29C1M30C1M31
C1M33
C1M34C1M35C1M36

C1M13C1M14C1M15C1M16C1M17
C1M18C1M19C1M20C1M22C1M23C1M24

C2M1
C2M2
C2M3C2M4C2M5C2M6
C2M8
C2M10C2M11C2M12C2M13C2M14C2M16C2M17
C2M18C2M19C2M20C2M21
C2M22C2M23C2M24C2M25C2M26
C2M28

C3M16
C3M15C3M14C3M13C3M12C3M11C3M10C3M9
C3M8
C3M6
C3M5C3M4C3M3
C3M2C3M1

C4M1
C4M2C4M3C4M4C4M5C4M6C4M7C4M8C4M9C4M10

C5M1C5M3C5M4C5M5C5M6C5M7C5M8
C5M10C5M9

1 2 3 4 5

Figure 16: Plot of the estimated genetic map, after messing up the order of markers on chromo-
some 1.

30

the markers. One might first use compareorder() to compare the current order to the
reorganized one, to see that the new order gave a clear improvement in likelihood. In
addition, one will often need to alternate between ripple() and switch.order() until the
final marker order is established.

Drop one marker at a time

The large gaps in the genetic map on chromosome 1 remain a concern. While such gaps
may indicate problems with the order of markers, they might also indicate a high genotyping
error rate at certain markers. If an individual marker is more prone to genotyping errors
than others, it would often (in the sort of analyses performed above) be placed at one end
of the chromosome or the other, but in some cases (particularly if the genotyping error
rate is not high and there are a large number of individuals in the cross) it may be placed
at approximately the correct position but result in reasonably large gaps surrounding the
marker.

One approach for identifying such problematic markers is to drop one marker at a time and
investigate the change in chromosome length and the change in log likelihood. This analysis
may be accomplished with the function droponemarker().

> dropone <- droponemarker(mapthis, error.prob=0.005)

The results are of the same form as a genome scan by QTL mapping. (In particular, they
have class "scanone", like an object produced by the scanone() function.) We may plot
the results as follows.

> par(mfrow=c(2,1))
> plot(dropone, lod=1, ylim=c(-100,0))
> plot(dropone, lod=2, ylab="Change in chromosome length")

As seen in top panel of Fig. 17, there is no one marker for which its omission results in an
increase in likelihood, but as seen in the bottom panel, there are a number of markers that
give an appreciable decrease in chromosome length, of 15–25 cM, when omitted. Markers at
the ends of chromosomes will often result in a smaller estimated chromosome length, but that
is just because such terminal markers hang off some distance from the rest of the markers,
and so these changes can often be discounted. Interior markers that result in a big change,
and there appears to be one on each of chromosomes 1, 2 and 3, might indicate error-prone
markers that are best omitted.

One may identify the marker on each chromosome whose omission results in the largest
decreases in chromosome length as follows.

> summary(dropone, lod.column=2)

chr pos LOD Ldiff
C1M27 1 162.4 -26.3 25.78
C2M8 2 47.3 -13.7 15.79
C3M8 3 55.4 -31.0 14.86
C4M1 4 0.0 -41.5 16.13
C5M9 5 38.5 -97.6 2.73

31

−100

−80

−60

−40

−20

0

Chromosome

L
O

D

1 2 3 4 5

0

5

10

15

20

25

Chromosome

C
h

a
n

g
e

 i
n

 c
h

r
le

n
g

th
 (

c
M

)

1 2 3 4 5

Figure 17: Results of dropping one marker at a time. The top panel contains LOD scores; positive
values would indicate that dropping a marker improves the likelihood. The bottom panel indicates
the decrease in estimated chromosome length (in cM) following dropping a marker.

32

For chromosomes 4 and 5, these are terminal markers. The markers on chromosomes 1, 2
and 3 are all interior markers. One should probably study the pairwise linkage between these
markers and surrounding markers before proceeding, but we will go ahead and remove these
markers without any further investigations.

> badmar <- rownames(summary(dropone, lod.column=2))[1:3]
> mapthis <- drop.markers(mapthis, badmar)

One should re-estimate the genetic map. We use replace.map() to insert it into the cross
object.

> newmap <- est.map(mapthis, error.prob=0.005)
> mapthis <- replace.map(mapthis, newmap)
> summaryMap(mapthis)

n.mar length ave.spacing max.spacing
1 32 186.8 6.0 27.1
2 23 145.2 6.6 13.8
3 14 95.7 7.4 16.1
4 10 57.6 6.4 16.2
5 9 38.5 4.8 24.6
overall 88 523.7 6.3 27.1

Removing those three markers resulted in a decrease in the overall map length from 650 cM
to 524 cM.

Look for problem individuals

Now that we have the markers in their appropriate order, it is a good idea to return to the
question of whether there are particular individuals whose data are problematic. One should
ask: if a particular individual showed considerable genotyping errors or did not actually
belong to the cross under investigation (e.g., through some sort of labeling or breeding
error), what sort of aberrations might be seen in the data? Above, we studied the amount
of missing genotype data for each individual as well as the individuals’ genotype frequencies.
Another feature to investigate is the observed number of crossovers in each individual. These
may be counted with the function countXO(). (A related function locateXO() will return
the estimated locations of all crossovers.)

> plot(countXO(mapthis), ylab="Number of crossovers")

The crossover counts in Fig. 18 clearly indicate two problematic individuals, with 73 and 86
crossovers; the other individuals have 3–20 crossovers. We should remove these individuals.

> mapthis <- subset(mapthis, ind=(countXO(mapthis) < 50))

Ideally, we would now revisit the entire process again; in particular, after removing these
problematic individuals, is there evidence that marker order needs to be changed? Let us at
least look at chromosome 5.

> summary(rip <- ripple(mapthis, chr=5, window=7))

33

0 50 100 150 200 250 300

0
2

0
4

0
6

0
8

0

Index

N
u

m
b

e
r

o
f

c
ro

s
s
o
ve

rs

Figure 18: Numbers of observed crossovers in each individual.

13680 total orders
obligXO

Initial 1 2 3 4 5 6 7 8 9 198
1 1 2 3 4 5 6 7 9 8 195

> summary(rip <- ripple(mapthis, chr=5, window=2, method="likelihood",
+ error.prob=0.005))

9 total orders
--Order 2
--Order 4
--Order 6
--Order 8

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 0.0 37.8
1 1 2 3 4 5 6 7 9 8 0.9 37.1

There is good evidence for switching markers 8 and 9, which actually brings us back to the
true order of the markers.

> mapthis <- switch.order(mapthis, chr=5, c(1:7,9,8), error.prob=0.005)
> pull.map(mapthis, chr=5)

C5M1 C5M3 C5M4 C5M5 C5M6 C5M7 C5M8 C5M9 C5M10
0.00 1.06 2.50 3.93 7.88 8.48 11.09 35.07 37.07

I investigated the other four chromosomes similarly, and there was no evidence for further
changes in marker order, so I won’t present the results here. We should, finally, re-estimate
the genetic map.

> newmap <- est.map(mapthis, error.prob=0.005)
> mapthis <- replace.map(mapthis, newmap)
> summaryMap(mapthis)

34

n.mar length ave.spacing max.spacing
1 32 181.6 5.9 26.7
2 23 141.5 6.4 13.1
3 14 94.0 7.2 16.3
4 10 55.4 6.2 15.6
5 9 37.1 4.6 24.0
overall 88 509.6 6.1 26.7

The overall map length has decreased further, from 524 cM to 510 cM.

Estimate genotyping error rate

Above, I had generally assumed a genotyping error rate of 5/1000 (in estimating map dis-
tances and in likelihood calculations comparing different marker orders); but I cheated some-
what in using this value, as the genotype data were simulated with this error rate.

One can actually estimate the genotyping error rate from the data, as the function est.map()

not only estimates the inter-marker distances, but also calculates the log likelihood for each
chromosome. Thus, if we run est.map() with different assumed values for the genotyping er-
ror rate (specified with the error.prob argument), one can identify the maximum likelihood
estimate of the error rate.

> loglik <- err <- c(0.001, 0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02)
> for(i in seq(along=err)) {
+ cat(i, "of", length(err), "\n")
+ tempmap <- est.map(mapthis, error.prob=err[i])
+ loglik[i] <- sum(sapply(tempmap, attr, "loglik"))
+ }
> lod <- (loglik - max(loglik))/log(10)

The code is a bit tricky, mostly because the log likelihoods (and note that they are on the
natural log scale) are included as “attributes” to each chromosome component in the output
from est.map(). We use sapply() to pull those out, and then we add them up. We finally
convert them to the log10 scale and re-center them so that the maximum is 0.

We may plot the log10 likelihood as follows.

> plot(err, lod, xlab="Genotyping error rate", xlim=c(0,0.02),
+ ylab=expression(paste(log[10], " likelihood")))

The log10 likelihood in Fig. 19 indicates that the MLE is approximately 0.005. Error rates
of 0.0025 and 0.0075 have log10 likelihoods that are 3 less than that of the MLE. We might
investigate additional assumed error rates, or even use the R function optimize() to refine
our estimate, but we won’t pursue that here.

Look for genotyping errors

While the methods for estimating inter-marker distances allow for the presence of genotyping
errors at a fixed rate, it is nevertheless worthwhile to look for, and ideally correct, potential
genotyping errors in the data. Such errors may be identified through apparent tight double-
crossovers, with a single marker being out of phase with its adjacent markers.

35

0.000 0.005 0.010 0.015 0.020

−50

−40

−30

−20

−10

0

Genotyping error rate

lo
g

1
0
 l
ik

e
lih

o
o

d

Figure 19: The log10 likelihood for the genotyping error rate.

The most convenient approach for identifying such double-crossovers is to calculate genotyp-
ing error LOD scores, first developed by Lincoln and Lander (Genomics 14:604–610, 1992).
The LOD score compares the likelihood for a genotype being in error versus it not being
in error. R/qtl uses a modified calculation of such genotyping error LOD scores, with all
genotypes except that being considered assumed to be strictly correct.

The error LOD scores are calculated with calc.errorlod(). One must assume a genotyping
error rate, but the results are almost identical for a wide range of values.

> mapthis <- calc.errorlod(mapthis, error.prob=0.005)

The function top.errorlod() produces a list of the genotypes with the largest error LOD
scores. One may generally focus on those with quite large values, say at least 4–5. Here will
we look at just those genotypes with error LOD ≥ 6; this is indicated with the argument
cutoff.

> print(toperr <- top.errorlod(mapthis, cutoff=6))

chr id marker errorlod
1 1 id200 C1M23 8.25
2 1 id36 C1M30 8.13
3 1 id236 C1M24 7.32
4 1 id217 C1M35 7.25
5 1 id35 C1M29 7.10
6 1 id261 C1M29 7.10
7 5 id112 C5M6 6.96
8 4 id113 C4M7 6.58
9 1 id87 C1M9 6.22
10 5 id122 C5M5 6.19
11 1 id72 C1M34 6.03
12 2 id115 C2M19 6.02

36

0 50 100 150 200

Location (cM)

In
d

iv
id

u
a

l

id72

id87

id261

id35

id217

id236

id36

id200

Figure 20: Genotypes on chromosome 1 for individuals with some potential errors flagged by red
squares. White, gray and black circles correspond to AA, AB and BB genotypes, respectively.

There are 12 genotypes that meet this criterion. Let us look at the genotypes that were
flagged on chromosome 1, using the function plotGeno(). The argument cutoff indicates
a threshold for flagging genotypes as potential errors, based on their error LOD scores. If
we had used the argument include.xo=TRUE (which is the default), inferred locations of
crossovers would be displayed; we suppress that here to get a more clean figure.

> plotGeno(mapthis, chr=1, ind=toperr$id[toperr$chr==1],
+ cutoff=6, include.xo=FALSE)

The results are in Fig. 20. All of the flagged genotypes are cases with an exchange from one
homozygote to the other and then back again (thus, two crossovers in each interval flanking
a single marker).

One might zero out these suspicious genotypes (that is, make them missing). Even better
would be to revisit the raw genotyping information, or even re-genotype these instances. But
we are talking about just 12 genotypes out of 25,147, and with our allowance for genotyping
errors in the map estimation, they have little influence on the results.

If we did wish to delete these genotypes, we could do so as follows.

> mapthis.clean <- mapthis
> for(i in 1:nrow(toperr)) {
+ chr <- toperr$chr[i]
+ id <- toperr$id[i]
+ mar <- toperr$marker[i]
+ mapthis.clean$geno[[chr]]$data[mapthis$pheno$id==id, mar] <- NA
+ }

37

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Chromosome

−
lo

g
1

0
 P

−
va

lu
e

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Chromosome

G
e

n
o

ty
p

e
 f

re
q

u
e

n
c
y

1 2 3 4 5

Figure 21: Evidence for segregation distortion: −log10 P-values from tests of 1:2:1 segregation at
each marker (top panel) and the genotype frequencies at each marker (bottom panel, with black,
blue and red denoting AA, AB and BB genotypes, respectively).

Revisit segregation distortion

Finally, let us return to an investigation of segregation distortion in these data.

> gt <- geno.table(mapthis, scanone.output=TRUE)
> par(mfrow=c(2,1))
> plot(gt, ylab=expression(paste(-log[10], " P-value")))
> plot(gt, lod=3:5, ylab="Genotype frequency")
> abline(h=c(0.25, 0.5), lty=2, col="gray")

The top panel of Fig. 21 contains −log10 P-values from tests of 1:2:1 segregation at each
marker. The bottom panel in Fig. 21 contains the observed genotype frequencies at each
marker (with black, blue and red corresponding to AA, AB and BB genotypes, respectively).

38

150

100

50

0

Chromosome

L
o

c
a

ti
o

n
 (

c
M

)

C1M1C1M2C1M3
C1M5C1M6
C1M7C1M8C1M9C1M10
C1M11C1M12C1M13C1M14C1M15C1M16
C1M17
C1M18C1M19C1M20C1M22C1M23C1M24C1M25

C1M26

C1M28C1M29C1M30C1M31
C1M33
C1M34C1M35C1M36

C2M1
C2M2
C2M3C2M4C2M5C2M6
C2M10C2M11
C2M12
C2M13C2M14
C2M16C2M17
C2M18C2M19C2M20
C2M21
C2M22
C2M23C2M24C2M25
C2M26
C2M28

C3M16
C3M15C3M14C3M13
C3M12C3M11
C3M10C3M9
C3M6

C3M5C3M4C3M3
C3M2C3M1

C4M1

C4M2C4M3C4M4
C4M5
C4M6C4M7C4M8
C4M9C4M10

C5M1C5M3C5M4C5M5C5M6C5M7C5M8

C5M9C5M10

1 2 3 4 5

Figure 22: Plot of the final estimated genetic map

The greatest departure from 1:2:1 segregation is on chromosome 4, with somewhat more AA
genotypes and somewhat fewer BB genotypes. If we apply a Bonferroni correction for the
88 tests (88 is the total number of markers we have retained in the data), we would look for
P ≥ 0.05/88 which corresponds to −log10 P ≥ 3.25, and there is one marker on chromosome
4 that exceeds this.

There are also some departures from 1:2:1 segregation on chromosomes 2 and 3, but these
appear to be within the range of what would be expected by chance; the evidence for a real
departure from normal segregation is not strong.

The aberrant segregation pattern on chromosome 4 is not too worrisome. Multipoint esti-
mates of genetic map distances are little affected by segregation distortion, and the pattern of
distortion on the chromosome indicates rather smooth changes in genotype frequency. More
worrisome would be a single distorted marker in the midst of other markers with normal
segregation, which would indicate genotyping errors rather than, for example, the presence
of partially lethal alleles.

And so, finally, we’re done. Let us plot the final map.

> plotMap(mapthis, show.marker.names=TRUE)

The map in Fig. 22 is not pretty, as most of the marker names are obscured. R/qtl does
not produce production-quality figures automatically; I always go through quite a few extra
contortions within R to produce a figure suitable for a paper.

Discussion

The process of genetic map construction seems to be at least 90% data diagnostics. While
many might find that frustrating, for me that is a large part of what makes it fun: it is

39

interesting detective work. I have been involved in the construction of genetic maps for
humans, mice, dogs, zebrafish, mosquitoes, and sea squirts. Each project was different, with
its own special issues that needed to be overcome, and such issues can seldom be anticipated
in advance.

The general strategy is to think about what sorts of things might be going wrong with data,
and then what sorts of features of the data (summary statistics or plots) might indicate the
presence of such problems. There are a variety of things to check routinely, and note that
the particular order in which these checks are performed is often important.

In the procedures described above, and in forming these simulated data, I attempted to cover
most of the possible problems that might be expected to arise. With the simple intercross
considered here, and particularly as the data were simulated so that the problems would
generally be quite clear, the decisions about how to proceed were easy to make. In practice,
potential problems in data will often be more murky, and careful judgment calls will need
to be made and frequently revisited, ideally with careful consideration of raw genotyping
data and other records, and perhaps even with some additional rounds of genotyping or even
the redesign of genotyping assays. Moreover, with more complex experiments, such as an
outcross or the combined analysis of multiple crosses, additional issues will arise that we
have not touched on here. But the overall strategy, laid out above, can be applied quite
generally.

40

R/qtl functions useful for genetic map construction

plotMissing Plot pattern of missing genotypes
ntyped Count number of typed markers for each individual
nmissing Count number of missing genotypes for each individual
subset.cross Pull out a specified set of chromosomes and/or individuals from a cross
drop.markers Remove a list of markers
pull.markers Drop all but a selected set of markers
drop.nullmarkers Remove markers without data
comparegeno Count proportion of matching genotypes between all pairs of individuals
findDupMarkers Find markers with identical genotype data
drop.dupmarkers Drop duplicate markers
geno.table Create table of genotype distributions
est.rf Estimate pairwise recombination fractions
markerlrt General likelihood ratio test for association between marker pairs
checkAlleles Identify markers with potentially switched alleles
pull.rf Pull out the pairwise recombination fractions or LOD scores as a matrix
formLinkageGroups Partition markers into linkage groups
plotRF Plot recombination fractions
markernames Pull out the marker names from a cross
plot.rfmatrix Plot a slice through the pairwise recombination fractions or LOD scores
geno.crosstab Create cross-tabulation of genotypes at two markers
switchAlleles Switch alleles at selected markers
orderMarkers Find an initial order for markers within chromosomes
ripple Assess marker order by permuting groups of adjacent markers
summary.ripple Print summary of ripple output
est.map Estimate genetic map
pull.map Pull out the genetic map from a cross
compareorder Compare two orderings of markers on a chromosome
switch.order Switch the order of markers on a chromosome
summaryMap Print summary of a genetic map
plotMap Plot genetic map(s)
droponemarker Drop one marker at a time from a genetic map
replace.map Replace the genetic map of a cross
countXO Count number of obligate crossovers for each individual
locateXO Estimate locations of crossovers
calc.errorlod Calculate Lincoln & Lander (1992) error LOD scores
top.errorlod List genotypes with highest error LOD values
plotGeno Plot genotypes on a particular chromosomes for selected individuals

tryallpositions Test all possible positions for a marker
allchrsplits Test all possible splits of a chromosome into two pieces
movemarker Move a marker from one chromosome to another
convert.map Change map function for a genetic map
shiftmap Shift starting points in genetic maps
rescalemap Rescale genetic map

41

